Structure-Guided Optimization of Replication Protein A (RPA)–DNA Interaction Inhibitors
摘要:
Replication protein A (RPA) is the major human single stranded DNA (ssDNA)-binding protein, playing essential roles in DNA replication, repair, recombination, and DNA-damage response (DDR). Inhibition of RPA-DNA interactions represents a therapeutic strategy for cancer drug discovery and has great potential to provide single agent anticancer activity and to synergize with both common DNA damaging chemotherapeutics and newer targeted anticancer agents. In this letter, a new series of analogues based on our previously reported TDRL-551 (4) compound were designed to improve potency and physicochemical properties. Molecular docking studies guided molecular insights, and further SAR exploration led to the identification of a series of novel compounds with low micromolar RPA inhibitory activity, increased solubility, and excellent cellular up-take. Among a series of analogues, compounds 43, 44, 45, and 46 hold promise for further development of novel anticancer agents.
Structure-Guided Optimization of Replication Protein A (RPA)–DNA Interaction Inhibitors
摘要:
Replication protein A (RPA) is the major human single stranded DNA (ssDNA)-binding protein, playing essential roles in DNA replication, repair, recombination, and DNA-damage response (DDR). Inhibition of RPA-DNA interactions represents a therapeutic strategy for cancer drug discovery and has great potential to provide single agent anticancer activity and to synergize with both common DNA damaging chemotherapeutics and newer targeted anticancer agents. In this letter, a new series of analogues based on our previously reported TDRL-551 (4) compound were designed to improve potency and physicochemical properties. Molecular docking studies guided molecular insights, and further SAR exploration led to the identification of a series of novel compounds with low micromolar RPA inhibitory activity, increased solubility, and excellent cellular up-take. Among a series of analogues, compounds 43, 44, 45, and 46 hold promise for further development of novel anticancer agents.
Imaging agents for detecting neurological disorders
申请人:Gangadharmath Umesh B.
公开号:US20100239496A1
公开(公告)日:2010-09-23
Imaging agents of formula (I) and methods for detecting neurological disorders comprising administering to a patient in need compounds of formula (I) capable of binding to tau proteins and β-amyloid peptides are presented herein. The invention also relates to methods of imaging Aβ and tau aggregates comprising introducing a detectable quantity of pharmaceutical formulation comprising a radiolabeled compound of formula (I) and detecting the labeled compound associated with amyloid deposits and/or tau proteins in a patient. These methods and compositions enable preclinical diagnosis and monitoring progression of AD and other neurological disorders.
Imaging Agents for Detecting Neurological Disorders
申请人:Szardenings Anna Katrin
公开号:US20110182812A1
公开(公告)日:2011-07-28
Imaging agents of formulas (I)-(V) and methods for detecting neurological disorders comprising administering to a patient in need compounds of formulas (I)-(V) capable of binding to tau proteins and β-amyloid peptides are presented herein. The invention also relates to methods of imaging Aβ and tau aggregates comprising introducing a detectable quantity of pharmaceutical formulation comprising a radiolabeled compound of formulas (I)-(V) and detecting the labeled compound associated with amyloid deposits and/or tau proteins in a patient. These methods and compositions enable preclinical diagnosis and monitoring progression of AD and other neurological disorders.