Heterocoumarins Are Selective Carbonic Anhydrase IX and XII Inhibitors with Cytotoxic Effects against Cancer Cells Lines
摘要:
We have synthesized a new series of coumarin-based compounds demonstrating high selectivity and potent effects with low nanomolar affinity against the tumor associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA IX and XII. A number of these compounds were evaluated ex vivo against human prostate (PC3) and breast (MDA-MB-231) cancer cell lines. Compounds 4b and 15 revealed effective cytotoxic effects after 48 h of incubation in both normoxic and hypoxic conditions with PC3 cancer cell line. However, compound 3 showed selective cytotoxic effects against MDA-MB-231 in hypoxic condition. These results may be of particular importance for the choice of future drug candidates targeting hypoxic tumors and metastases, considering the fact that a selective carbonic anhydrase CA IX inhibitor (SLC-0111) is presently in phase II clinical trials.
Heterocoumarins Are Selective Carbonic Anhydrase IX and XII Inhibitors with Cytotoxic Effects against Cancer Cells Lines
作者:Andrea Angeli、Elena Trallori、Fabrizio Carta、Lorenzo Di Cesare Mannelli、Carla Ghelardini、Claudiu T. Supuran
DOI:10.1021/acsmedchemlett.8b00362
日期:2018.9.13
We have synthesized a new series of coumarin-based compounds demonstrating high selectivity and potent effects with low nanomolar affinity against the tumor associated carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA IX and XII. A number of these compounds were evaluated ex vivo against human prostate (PC3) and breast (MDA-MB-231) cancer cell lines. Compounds 4b and 15 revealed effective cytotoxic effects after 48 h of incubation in both normoxic and hypoxic conditions with PC3 cancer cell line. However, compound 3 showed selective cytotoxic effects against MDA-MB-231 in hypoxic condition. These results may be of particular importance for the choice of future drug candidates targeting hypoxic tumors and metastases, considering the fact that a selective carbonic anhydrase CA IX inhibitor (SLC-0111) is presently in phase II clinical trials.