Discovery of N-Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells
摘要:
Highly invasive tumor cells are characterized by a metabolic switch, known as the Warburg effect, from "normal" oxidative phosphorylation to increased glycolysis even under. sufficiently oxygenated conditions. This dependence on glycolysis also confers a growth advantage to cells present in hypoxic regions of the tumor. One of the key enzymes involved in glycolysis, the muscle isoform of lactate dehydrogenase (LDH-A), is overexpressed by metastatic cancer cells and is linked to the vitality of tumors in hypoxia. This enzyme may be considered as a potential target for new anticancer agents, since its inhibition cuts cancer energetic and anabolic supply, thus reducing the metastatic and invasive potential of cancer cells. We have discovered new and efficient N-hydroxyindole-based inhibitors of LDH-A, which are isoform-selective (over LDH-B) and competitive with both the substrate (pyruvate) and the cofactor (NADH). The antiproliferative activity of these compounds was confirmed on a series of cancer cell lines, and they proved to be particularly effective under hypoxic conditions. Moreover, NMR experiments showed that these compounds are able to reduce the glucose-to-lactate conversion inside the cell.
Discovery of N-Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells
摘要:
Highly invasive tumor cells are characterized by a metabolic switch, known as the Warburg effect, from "normal" oxidative phosphorylation to increased glycolysis even under. sufficiently oxygenated conditions. This dependence on glycolysis also confers a growth advantage to cells present in hypoxic regions of the tumor. One of the key enzymes involved in glycolysis, the muscle isoform of lactate dehydrogenase (LDH-A), is overexpressed by metastatic cancer cells and is linked to the vitality of tumors in hypoxia. This enzyme may be considered as a potential target for new anticancer agents, since its inhibition cuts cancer energetic and anabolic supply, thus reducing the metastatic and invasive potential of cancer cells. We have discovered new and efficient N-hydroxyindole-based inhibitors of LDH-A, which are isoform-selective (over LDH-B) and competitive with both the substrate (pyruvate) and the cofactor (NADH). The antiproliferative activity of these compounds was confirmed on a series of cancer cell lines, and they proved to be particularly effective under hypoxic conditions. Moreover, NMR experiments showed that these compounds are able to reduce the glucose-to-lactate conversion inside the cell.
申请人:ELM CO., LTD. 주식회사 이엘엠(120020276957) Corp. No ▼ 110111-2435439BRN ▼214-87-04493
公开号:KR101505059B1
公开(公告)日:2015-03-25
본 발명은 유기 전기발광 소자에 사용되는 화합물 유도체와 이를 이용한 유기 전기발광 소자에 관한 것으로, 더욱 자세하게는 방향족 아민 유도체 화합물을 제조하고, 이를 유기 전기발광 소자의 정공전달물질로 사용하여 소자의 수명을 증가시키며, 발광 휘도와 발광 효율이 우수한 유기 전기발광 소자를 제공하는 것이다.