摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(9-anthroyl)-2-(4-N,N-dimethylaniline) ethane | 80525-77-5

中文名称
——
中文别名
——
英文名称
1-(9-anthroyl)-2-(4-N,N-dimethylaniline) ethane
英文别名
1-(Anthracen-9-YL)-3-[4-(dimethylamino)phenyl]propan-1-one;1-anthracen-9-yl-3-[4-(dimethylamino)phenyl]propan-1-one
1-(9-anthroyl)-2-(4-N,N-dimethylaniline) ethane化学式
CAS
80525-77-5
化学式
C25H23NO
mdl
——
分子量
353.464
InChiKey
OWNPEMGOCGEFMG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.1
  • 重原子数:
    27
  • 可旋转键数:
    5
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.16
  • 拓扑面积:
    20.3
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-(9-anthroyl)-2-(4-N,N-dimethylaniline) ethane 在 lithium aluminium tetrahydride 、 三氯化铝 作用下, 以 乙醚 为溶剂, 反应 2.0h, 以18%的产率得到4-[3-(9-anthryl)propyl]-N,N-dimethylaniline
    参考文献:
    名称:
    分子内异准分子系统的皮秒激光光谱。p-(CH3)2NC6H4–(CH2)n–(9-Anthryl),p-(CH3)2NC6H4–(1-Pyrenyl) 系统和 9,9'-Bianthryl 的时间分辨荧光研究
    摘要:
    为了阐明光化学电荷转移和异源准分子形成过程的基本过程的细节,也为了将获得的结果与瞬态吸收光谱测量的结果进行比较,我们通过 ps 时间分辨方法检查了以下分子内异源准分子系统使用锁模 Nd3+ 进行荧光测量:YAG 激光器和条纹相机:p-(CH3)2–NC6H4–(CH2)n–(9-蒽基) (n=0, 1, 2, 3), p-( CH3)2NC6H4–(CH2)n-(1-芘基) (n=1, 2, 3) 和 9,9'-联蒽基。已经清楚地证明了亚甲基链长、溶剂极性和粘度对分子内电荷转移过程的影响。得出的结论是,在 n=3 化合物中均未识别出在基态具有夹心构型的分子,由于采用夹心构型所需的广泛构象变化,在己烷中形成异源准分子需要几纳秒。构象变化和溶剂重新定向都涉及...
    DOI:
    10.1246/bcsj.54.3304
  • 作为产物:
    描述:
    9-乙酰基蒽potassium cyanide 、 lithium aluminium tetrahydride 作用下, 以 乙醚乙醇 为溶剂, 反应 24.0h, 生成 1-(9-anthroyl)-2-(4-N,N-dimethylaniline) ethane
    参考文献:
    名称:
    分子内异准分子系统的皮秒激光光谱。p-(CH3)2NC6H4–(CH2)n–(9-Anthryl),p-(CH3)2NC6H4–(1-Pyrenyl) 系统和 9,9'-Bianthryl 的时间分辨荧光研究
    摘要:
    为了阐明光化学电荷转移和异源准分子形成过程的基本过程的细节,也为了将获得的结果与瞬态吸收光谱测量的结果进行比较,我们通过 ps 时间分辨方法检查了以下分子内异源准分子系统使用锁模 Nd3+ 进行荧光测量:YAG 激光器和条纹相机:p-(CH3)2–NC6H4–(CH2)n–(9-蒽基) (n=0, 1, 2, 3), p-( CH3)2NC6H4–(CH2)n-(1-芘基) (n=1, 2, 3) 和 9,9'-联蒽基。已经清楚地证明了亚甲基链长、溶剂极性和粘度对分子内电荷转移过程的影响。得出的结论是,在 n=3 化合物中均未识别出在基态具有夹心构型的分子,由于采用夹心构型所需的广泛构象变化,在己烷中形成异源准分子需要几纳秒。构象变化和溶剂重新定向都涉及...
    DOI:
    10.1246/bcsj.54.3304
点击查看最新优质反应信息

文献信息

  • Picosecond Laser Spectroscopy of Intramolecular Heteroexcimer Systems. Time-resolved Fluorescence Studies of<i>p</i>-(CH<sub>3</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>–(CH<sub>2</sub>)<i><sub>n</sub></i>–(9-Anthryl),<i>p</i>-(CH<sub>3</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>–(1-Pyrenyl) Systems and 9,9′-Bianthryl
    作者:Masahito Migita、Tadashi Okada、Noboru Mataga、Yoshiteru Sakata、Soichi Misumi、Nobuaki Nakashima、Keitaro Yoshihara
    DOI:10.1246/bcsj.54.3304
    日期:1981.11
    9′-bianthryl. Effects of methylene chain length, solvent polarity and viscosity upon the intramolecular charge transfer processes have been clearly demonstrated. It is concluded that molecules with sandwich configuration in the ground state are not recognized in both n=3 compounds, and it takes a few ns for the heteroexcimer formation in hexane because of an extensive conformation change necessary to
    为了阐明光化学电荷转移和异源准分子形成过程的基本过程的细节,也为了将获得的结果与瞬态吸收光谱测量的结果进行比较,我们通过 ps 时间分辨方法检查了以下分子内异源准分子系统使用锁模 Nd3+ 进行荧光测量:YAG 激光器和条纹相机:p-(CH3)2–NC6H4–(CH2)n–(9-蒽基) (n=0, 1, 2, 3), p-( CH3)2NC6H4–(CH2)n-(1-芘基) (n=1, 2, 3) 和 9,9'-联蒽基。已经清楚地证明了亚甲基链长、溶剂极性和粘度对分子内电荷转移过程的影响。得出的结论是,在 n=3 化合物中均未识别出在基态具有夹心构型的分子,由于采用夹心构型所需的广泛构象变化,在己烷中形成异源准分子需要几纳秒。构象变化和溶剂重新定向都涉及...
  • Picosecond excitation and selective intramolecular rates in supersonic molecular beams. III. Photochemistry and rates of a charge transfer reaction
    作者:J. A. Syage、P. M. Felker、A. H. Zewail
    DOI:10.1063/1.447925
    日期:1984.9
    The picosecond state-selective dynamics and photochemistry of the molecule A–(CH2)3–φ, where A and φ are aromatic chromophores, was studied under collision-free conditions in a supersonic beam. Time-resolved fluorescence measurements of the reactant and the charge transfer (exciplex) product were undertaken as a function of specific vibrational energy above the zero point level of S1. From these studies along with an analysis of the excitation spectra, dispersed flourescence, and quantum yields, the following results and conclusions were reached: (i) IVR is much faster than reaction at all excess energies studied. (ii) The energy threshold for product formation is E0≂900 cm−1 (2.6 kcal/mol). The analysis of the rates using an effective temperature model gives a frequency factor of A0≊1.2×1010 s−1. Four torsions were identified as critical to the reaction dynamics which were modeled according to a multidimensional reaction coordinate using an RRKM scheme. (iii) The thermodynamics of the isolated charge transfer product indicates strong stabilization ΔH=−9.2 kcal/mol and extensive charge transfer, the static dipole moment is 13 D, and the charge transfer contribution to the total electronic wave function ‖c2‖2 is 0.86. (iv) A comparison of the present work to solution phase studies of A–(CH2)3–φ indicates similar static properties but different dynamics. The calculated thermal (room temperature) reaction time for exciplex formation in the vapor (540 ps) was compared to the shortest observed value in solution (1.4 ns) to assess the role of the solvent on the chain motions which lead to product formation.
查看更多