摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

potassium cyanide

中文名称
——
中文别名
——
英文名称
potassium cyanide
英文别名
KCN;cyanopotassium;potassium;cyanide
potassium cyanide化学式
CAS
——
化学式
CN*K
mdl
——
分子量
65.116
InChiKey
NNFCIKHAZHQZJG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.9
  • 重原子数:
    3
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    23.8
  • 氢给体数:
    0
  • 氢受体数:
    2

ADMET

代谢
氰离子与硫结合形成硫氰酸盐。这种结合是由广泛分布于大多数动物组织尤其是肝脏中的酶——硫氰酸酶催化的。硫氰酸酶的机制能够解毒的氰化物量是有限的,例如在正常代谢过程中形成的量。另一个硫供体是3-巯基丙酮酸。这种酶,巯基硫酸转移酶定位于细胞质中。
... CYANIDE ION IS CONJUGATED WITH SULFUR TO FORM THIOCYANATE. ... CONJUGATION IS CATALYZED BY ... RHODANESE WHICH IS WIDELY DISTRIBUTED IN MOST ANIMAL TISSUES ... /LIVER/ PARTICULARLY ACTIVE. ... RHODANESE MECHANISM IS CAPABLE OF DETOXICATING ONLY LIMITED AMT OF CYANIDE, SUCH AS ARE FORMED DURING NORMAL METAB. /ANOTHER SULFUR DONOR IS 3-MERCAPTOPYRUVATE. THE ENZYME, MERCAPTOSULFUR TRANSFERASE IS LOCALIZED IN CYTOSOL./ /CYANIDE/
来源:Hazardous Substances Data Bank (HSDB)
代谢
氰化物给药后,未受保护的小鼠和用各种氰化物解毒剂预处理过的动物会排泄硫氰酸盐。单独给予氰化物或给予用硫代硫酸盐预处理过的动物,氰化物会大量转化为硫氰酸盐。氰化物通过尿液排出,通过检测尿液中高含量的钴离子和强烈配合物结合的氰化物得以证实。本文描述了一种测定存在为钴氰化物配合物的氰化物的方法,并提出了其法医应用。
THE EXCRETION OF THIOCYANATE FOLLOWING THE ADMINISTRATION OF EQUITOXIC DOSES OF CYANIDE TO UNPROTECTED MICE AND TO ANIMALS PRETREATED WITH VARIOUS CYANIDE ANTIDOTES WAS STUDIED. CYANIDE GIVEN ALONE OR TO ANIMALS PRETREATED WITH THIOSULFATE IS EXTENSIVELY CONVERTED TO THIOCYANATE. THE CYANIDE IS EXCRETED IN THE URINE, AS DEMONSTRATED BY DETECTION OF HIGH AMOUNTS OF COBALT IONS AND STRONGLY COMPLEX-BOUND CYANIDE IN THE URINE. A METHOD FOR THE DETERMINATION OF CYANIDE PRESENT AS COBALT CYANIDE COMPLEXES IS DESCRIBED AND ITS FORENSIC APPLICATION IS PROPOSED.
来源:Hazardous Substances Data Bank (HSDB)
代谢
脂肪族腈类被认为通过释放氰化物(CN)表现出其毒性。研究了饱和和不饱和脂肪族一腈和二腈对大鼠组织和血液中CN水平、组织谷胱甘肽水平和细胞色素c氧化酶活性的影响,以及相应的毒性症状和等效LD50剂量的效应。毒性症状分为两类:一类是在不饱和腈中观察到的拟胆碱效应,另一类是在饱和氰化钾中观察到的中枢神经系统效应。处理后1小时,肝脏和血液中CN水平最高的是丙二腈,其次是丙烯腈、丙腈、丁腈、丙烯腈、丙烯腈、戊腈、丙酮腈。在大脑中,氰化钾的顺序在丙二腈和PCN之前。肝脏和细胞色素c氧化酶活性显著抑制,与其CN水平相对应。在体外没有观察到细胞色素c氧化酶的显著抑制。丙烯腈是唯一显著降低组织GSH水平的腈。脂肪族腈类的毒性表现取决于CN的释放和其不饱和程度。对于不饱和脂肪族腈类,CN的释放在其毒性中起到了最小作用。/氰化物/
Aliphatic nitriles have been postulated to manifest their toxicity through cyanide (CN) liberation. The signs of toxicity and effect of equitoxic LD50 doses of saturated and unsaturated aliphatic mono- and dinitriles on tissue and blood CN levels, tissue glutathione levels and cytochrome c oxidase activities were studied in rats. Signs of toxicity were classified into cholinomimetic effects observed with unsaturated nitriles and CNS effects observed with saturated potassium cyanide. Hepatic and blood CN levels 1 hr after treatment were highest following malononitrile and decreased in the order of propionitrile > potassium cyanide > butyronitrile > acrylonitrile > allylcyanide > fumaronitrile > acetonitrile. The order differed in brain where potassium cyanide preceded malononitrile and PCN. Hepatic and cytochrome c oxidase were significantly inhibited and corresponded to their CN levels. No significant inhibition of cytochrome c oxidase was observed in vitro. Acrylonitrile was the only nitrile which significantly reduced tissue GSH levels. Toxic expression of aliphatic nitriles depended on CN release and their degree of unsaturation. With unsaturated aliphatic nitriles CN release played a minimal role in their toxicity. /Cyanides/
来源:Hazardous Substances Data Bank (HSDB)
代谢
米根霉(Rhizopus oryzae),一种与木薯收获后腐败相关的毛霉科真菌,被发现能有效地代谢氰化物。通过在含有和不含有亚麻苷和氰化钾的马铃薯葡萄糖肉汤中培养该微生物,研究了米根霉对木薯氰苷的降解。研究了微生物对低和高氰化物浓度的适应性对生长和向含氰化物培养基中释放细胞外硫酸酯酶(rhodanese)的影响。与适应氰化物的培养物相比,未适应的米根霉培养物生长较差。然而,与适应的培养物相比,未适应的米根霉培养物释放了大量硫酸酯酶。发现氰化钾(1.0 mM)是硫酸酯酶的有效诱导剂,而氰化钾(5.0 mM)则抑制了硫酸酯酶的释放。硫代硫酸盐和硫氰酸盐产生了显著的诱导效果。
Rhizopus oryzae, a mucoraceous fungus associated with the postharvest spoilage of cassava was found to effectively metabolize cyanide. Degradation of cyanogenic glycosides of cassava by R oryzae was studied by growing the organism in potato dextrose broth with and without linarmarin and potassium cyanide. The influence of adaptation of the organism to low and high cyanide concentrations on both growth and the release of extracellular rhodanese into cyanide containing media was studied. Nonadapted cultures of R oryzae grow poorly when compared with the cyanide adapted cultures. However non-adapted R oryzae cultures released large quantities of rhodanese when compared with the adapted ones. Potassium cyanide (1.0 mM) was found to be an efficient inducer of rhodanese whereas potassium cyanide (5.0 mM) repressed the release of rhodanese. A significant inductive effect was produced by thiosulphate and thiocyanate.
来源:Hazardous Substances Data Bank (HSDB)
代谢
有机腈通过肝脏中的细胞色素P450酶的作用转化为氰化物离子。氰化物迅速被吸收并在全身分布。氰化物主要通过罗丹酶或3-巯基丙酸硫转移酶代谢为硫氰酸盐。氰化物代谢物通过尿液排出。
Organic nitriles are converted into cyanide ions through the action of cytochrome P450 enzymes in the liver. Cyanide is rapidly absorbed and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine. (L96)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别:其他氰化物,如钠和钾氰化物,是广泛用于金、银提取过程、电镀、钢件表面硬化、贱金属浮选、金属脱脂、染色、印刷和摄影的固体或结晶吸湿性盐。它们还广泛应用于有机和无机化学合成(例如,腈、羧酸、酰胺、酯和胺;重金属氰化物)和螯合剂的生产。人类暴露:氰化物通过胃肠道的吸收或皮肤吸收,通过呼吸道迅速吸收。一旦被吸收,氰化物就会迅速且普遍地分布在整个身体中,尽管在肝脏、肺、血液和大脑中的含量通常最高。在慢性或反复接触后,血液或组织中没有氰化物的积累。大约80%的吸收氰化物在肝脏中被线粒体硫转移酶酶罗丹酶和其他硫转移酶代谢为硫氰酸盐。硫氰酸盐通过尿液排出。氰化物解毒的次要途径包括与胱氨酸反应产生氨噻唑啉-和亚氨噻唑啉羧酸,以及与羟钴胺(维生素B12a)结合形成氰钴胺(维生素B12);这些终产品也通过尿液排出。氰化物毒性特征的主要方面是其通过所有给药途径的高急性毒性,具有非常陡峭且与剂量相关的剂量-效应曲线,以及慢性毒性,可能通过主要代谢物和解毒产物硫氰酸盐介导。氰化物离子在人类和动物中的毒性效应通常是相似的,被认为是由于细胞色素氧化酶的失活和细胞呼吸的抑制,导致组织缺氧。氰化物毒性在人类中的主要靶点是心血管系统、呼吸系统和中枢神经系统。内分泌系统也是长期毒性的潜在靶点,因为持续暴露于硫氰酸盐会阻止甲状腺吸收碘并作为致甲状腺肿大的因素。严重急性中毒后的后遗症可能包括神经精神表现和帕金森病样疾病。来自烟草烟雾的氰化物被认为是烟草-酒精弱视的一个促成因素。长期暴露于职业环境中较低浓度的氰化物会导致与中枢神经系统效应相关的一系列症状。氰化物对皮肤和眼睛有轻微刺激性;未发现碱盐。动物/植物研究:氰化物毒性特征的主要方面是其通过所有给药途径的高急性毒性,具有非常陡峭且与剂量相关的剂量-效应曲线,以及慢性毒性,可能通过主要代谢物和解毒产物硫氰酸盐介导。氰化物离子在人类和动物中的毒性效应通常是相似的,被认为是由于细胞色素氧化酶的失活和细胞呼吸的抑制,导致组织缺氧。氰化物毒性在动物中的主要靶点是心血管系统、呼吸系统和中枢神经系统。内分泌系统也是长期毒性的潜在靶点,因为持续暴露于硫氰酸盐会阻止甲状腺吸收碘并作为致甲状腺肿大的因素。在一项为期13周的重复剂量毒性研究中,通过饮水给予氰化物,在大鼠或小鼠的大脑或甲状腺中没有与中枢神经系统效应或组织病理学效应相关的临床迹象。雄性大鼠的生殖道有轻微变化,尽管这些变化显然不会影响大鼠的生育能力。本研究对神经毒性的检查仅限于临床观察和尸检光学显微镜。少数可用的专门用于研究神经毒性的研究,尽管在1.2毫克氰化物/千克体重/天的大鼠和0.48毫克氰化物/千克体重/天的山羊的暴露水平上报不良效应,但由于存在弱点,无法进行定量评估。关于重复剂量毒性对吸入的浓度-反应关系(主要与职业环境相关),在三项单独的大鼠研究中,大鼠暴露于在生理pH下迅速水解为氢氰酸的丙酮氰醇,在浓度高达211毫克/立方米(对应于67毫克氢氰酸/立方米)时,没有出现不良系统性效应。剂量-效应曲线的陡峭程度可以通过观察到部分时间暴露于225毫克丙酮氰醇/立方米(71毫克氢氰酸/立方米)的大鼠中有30%的死亡率来说明。暴露于环境中通常存在的低浓度氰化物(<1微克/立方米在环境空气中;<10微克/升在水中)不太可能产生不良影响。/氰化物/
IDENTIFICATION: Other cyanides, such as sodium and potassium cyanide, are solid or crystalline hygroscopic salts widely used in ore extracting processes for the recovery of gold and silver, electroplating, case-hardening of steel, base metal flotation, metal degreasing, dyeing, printing, and photography. They are also widely used in the synthesis of organic and inorganic chemicals (e.g., nitriles, carboxylic acids, amides, esters, and amines; heavy metal cyanides) and in the production of chelating agents. HUMAN EXPOSURE: Cyanides are well absorbed via the gastrointestinal tract or skin and rapidly absorbed via the respiratory tract. Once absorbed, cyanide is rapidly and ubiquitously distributed throughout the body, although the highest levels are typically found in the liver, lungs, blood, and brain. There is no accumulation of cyanide in the blood or tissues following chronic or repeated exposure. Approximately 80% of absorbed cyanide is metabolized to thiocyanate in the liver by the mitochondrial sulfur transferase enzyme rhodanese and other sulfur transferases. Thiocyanate is excreted in the urine. Minor pathways for cyanide detoxification involve reaction with cystine to produce aminothiazoline- and iminothiazolidinecarboxylic acids and combination with hydroxycobalamin (vitamin B12a) to form cyanocobalamin (vitamin B12); these end-products are also excreted in the urine. The principal features of the toxicity profile for cyanide are its high acute toxicity by all routes of administration, with a very steep and rate-dependent dose-effect curve, and chronic toxicity, probably mediated through the main metabolite and detoxification product, thiocyanate. The toxic effects of cyanide ion in humans and animals are generally similar and are believed to result from inactivation of cytochrome oxidase and inhibition of cellular respiration and consequent histotoxic anoxia. The primary targets of cyanide toxicity in humans are the cardiovascular, respiratory, and central nervous systems. The endocrine system is also a potential target for long-term toxicity, as a function of continued exposure to thiocyanate, which prevents the uptake of iodine in the thyroid and acts as a goitrogenic agent. Sequele after severe acute intoxications may include neuropsychiatric manifestations and Parkinson-type disease. Cyanide from tobacco smoke has been implicated as a contributing factor in tobacco-alcohol amblyopia. Long-term exposure to lower concentrations of cyanide in occupational settings can result in a variety of symptoms related to central nervous system effects. Cyanides are weakly irritating to the skin and eye; alkali salts have not been identified. ANIMAL/PLANT STUDIES: The principal features of the toxicity profile for cyanide are its high acute toxicity by all routes of administration, with a very steep and rate-dependent dose-effect curve, and chronic toxicity, probably mediated through the main metabolite and detoxification product, thiocyanate. The toxic effects of cyanide ion in humans and animals are generally similar and are believed to result from inactivation of cytochrome oxidase and inhibition of cellular respiration and consequent histotoxic anoxia. The primary targets of cyanide toxicity in animals are the cardiovascular, respiratory, and central nervous systems. The endocrine system is also a potential target for long-term toxicity, as a function of continued exposure to thiocyanate, which prevents the uptake of iodine in the thyroid and acts as a goitrogenic agent. In a 13-week repeated-dose toxicity study in which cyanide was administered in drinking-water, there were no clinical signs associated with central nervous system effects or histopathological effects in the brain or thyroid of rats or mice. There were slight changes in the reproductive tract in male rats, which, although they apparently would not affect fertility in rats. The examination of neurotoxicity in this study was limited to clinical observation and optical microscopy in autopsy. The few available studies specifically intended to investigate neurotoxicity, while reporting adverse effects at exposure levels of 1.2 mg cyanide/kg body weight per day in rats and 0.48 mg cyanide/kg body weight per day in goats, suffer from weaknesses that preclude their quantitative assessment. In relation to characterization of concentration-response for repeated-dose toxicity for inhalation (relevant principally to the occupational environment), in three separate studies in rats, there were no adverse systemic effects in rats exposed to acetone cyanohydrin, which is rapidly hydrolysed to hydrogen cyanide at physiological pH, at concentrations up to 211 mg/m3 (corresponding to a concentration of 67 mg hydrogen cyanide/m3). The steepness of the dose-effect curve is illustrated by the observation of 30% mortality among rats exposed part of the day to 225 mg acetone cyanohydrin/m3 (71 mg hydrogen cyanide/m3). Adverse effects of exposure to the low concentrations of cyanide that are generally present in the general environment (<1 ug/m3 in ambient air; <10 ug/litre in water) are unlikely. /Cyanide/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
有机腈在体内和体外都会分解成氰化物离子。因此,有机腈的主要毒性机制是它们产生有毒的氰化物离子或氢氰酸。氰化物是电子传递链第四复合体(存在于真核细胞线粒体膜中)中的细胞色素c氧化酶的抑制剂。它与这种酶中的三价铁原子形成配合物。氰化物与这种细胞色素的结合阻止了电子从细胞色素c氧化酶传递到氧气。结果,电子传递链被中断,细胞无法再通过有氧呼吸产生ATP能量。主要依赖有氧呼吸的组织,如中枢神经系统和心脏,受到特别影响。氰化物也通过与过氧化氢酶、谷胱甘肽过氧化物酶、变性血红蛋白、羟钴胺素、磷酸酶、酪氨酸酶、抗坏血酸氧化酶、黄嘌呤氧化酶、琥珀酸脱氢酶以及Cu/Zn超氧化物歧化酶结合,产生一些毒性效应。氰化物与变性血红蛋白中的三价铁离子结合,形成无活性的氰化变性血红蛋白。
Organic nitriles decompose into cyanide ions both in vivo and in vitro. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. (L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
短时间内接触高浓度的氰化物会对大脑和心脏造成伤害,甚至可能导致昏迷、癫痫、呼吸暂停、心脏骤停和死亡。长期吸入氰化物会引起呼吸困难、胸痛、呕吐、血象改变、头痛和甲状腺肿大。皮肤接触氰化物盐可能会引起刺激并产生溃疡。
Exposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma, seizures, apnea, cardiac arrest and death. Chronic inhalation of cyanide causes breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Skin contact with cyanide salts can irritate and produce sores. (L96, L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
这种物质可以通过吸入、皮肤接触和摄入被身体吸收。
The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
来源:ILO-WHO International Chemical Safety Cards (ICSCs)
吸收、分配和排泄
在30天内,给予小鼠的(14)C-氰化物剂量中,72%的(14)C通过尿液和粪便排出,25%通过呼出的空气排出,3%被保留……呼出的空气中的排泄高峰在10分钟内出现,尿液和粪便中的排泄高峰在6-24小时内出现。/氰化物/
IN 30 DAYS, 72% OF (14)C FROM IP DOSE OF (14)C-CYANIDE TO MICE WAS EXCRETED IN URINE & FECES, 25% IN EXPIRED AIR, & 3% WAS RETAINED ... PEAK EXCRETION OCCURRED WITHIN 10 MIN IN EXPIRED AIR & WITHIN 6-24 HR IN URINE & FECES. /CYANIDE/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
氰化物离子在口服或注射给药后容易被吸收。长时间的局部接触氰化物溶液可能会导致通过皮肤吸收到有毒量的氰化物。吸收的部分氰化物会通过肺部以原形排出。更大的一部分会通过硫转移酶转化为相对无毒的硫氰酸盐离子。
CYANIDE ION IS READILY ABSORBED AFTER ORAL OR PARENTERAL ADMIN. PROLONGED LOCAL CONTACT WITH CYANIDE SOLN ... MAY RESULT IN ABSORPTION OF TOXIC AMT THROUGH SKIN. PART OF ABSORBED CYANIDE IS EXCRETED UNCHANGED BY THE LUNG. LARGER PORTION ... CONVERTED BY SULFURTRANSFERASE TO RELATIVELY NONTOXIC THIOCYANATE ION. /CYANIDE/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在给绵羊注射了10毫克/千克氰化钾后,全血中的氰化物浓度是血浆、血清、脑脊液、尾状核和白质的2到3倍。
AFTER IM INJECTION OF POTASSIUM CYANIDE AT 10 MG(CN)/KG IN SHEEP, THE CN CONCN IN WHOLE BLOOD WAS 2-3 TIMES AS HIGH AS IN PLASMA, SERUM, CEREBROSPINAL FLUID, CAUDATE NUCLEUS & WHITE MATTER.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在大鼠连续摄入氰化钾的情况下,研究了(14)C标记氰化物在大鼠中的排泄情况,这些大鼠在6周内每天通过饮食摄入标记的氰化钾。尿液排泄是这些大鼠中氰化碳消除的主要途径,在12小时内占总排泄活性的83%,在24小时内占总排泄活性的89%。尿液中氰化物的主要排泄代谢物是硫氰酸盐,这种代谢物在12小时和24小时分别占总尿活性的71%和79%。当将这些结果与对照组大鼠的结果进行比较时,很明显,无论是尿液还是呼吸,氰化碳的消除方式并没有因为长期摄入氰化物而改变。
The excretion of (14)C-labeled cyanide in rats exposed to chronic intake of potassium cyanide was studied in rats exposed to daily intake of labeled potassium cyanide in the diet for 6 weeks. Urinary excretion was the main route of elimination of cyanide carbon in these rats, accounting for 83% of the total excreted radioactivity in 12 hr and 89% of the total excreted radioactivity in 24 hr. The major excretion metabolite of cyanide in urine was thiocyanate, and this metabolite accounted for 71 and 79% of the total urinary activity in 12 hr and 24 hr, respectively. When these results were compared with those observed for control rats, it was clear that the mode of elimination of cyanide carbon in both urine and breath was not altered by the chronic intake of cyanide.
来源:Hazardous Substances Data Bank (HSDB)

反应信息

  • 作为反应物:
    描述:
    potassium cyanide 、 potassium bromide 作用下, 以 为溶剂, 反应 0.09h, 以72%的产率得到溴化氰
    参考文献:
    名称:
    溴和氰化溴化物发生器的集成,用于连续流动合成环胍。
    摘要:
    描述了一种利用膜分离技术从溴和氰化钾原位按需生成溴化氰(BrCN)的连续流工艺。为了规避元素溴的处理,储存和运输,可以选择在上游连接使用溴酸盐-溴化物共比例的连续溴发生器。通过实施在线FTIR技术,可以监控和量化BrCN的产生。通过将Br 2和BrCN发生器串联连接,每分钟可产生0.2 mmol BrCN,这相当于0.8  m BrCN在二氯甲烷中的溶液。模块化Br 2/ BrCN生成器用于合成多种生物学相关的五元和六元环状am和胍。该设置既可以完全集成的连续格式进行操作,也可以在半分批模式下(对于反应性结晶有利)操作。
    DOI:
    10.1002/anie.201708533
  • 作为产物:
    描述:
    参考文献:
    名称:
    CLEAN METHOD FOR PREPARING D,L-METHIONINE
    摘要:
    本发明揭示了一种制备D,L-蛋氨酸的清洁方法,包括以下步骤:使用含有碳酸钾的结晶母液制备氰化钾溶液作为吸收液吸收氰化氢,然后将氰化钾溶液与3-甲硫基丙醛和碳酸氢铵溶液在50-150°C反应3-15分钟,以获得5-(β-甲硫基乙基)甘氨酰脲溶液,然后将5-(β-甲硫基乙基)甘氨酰脲溶液加热至140-220°C进行皂化反应2-5分钟,皂化完成后将温度降至0-40°C,用有机溶剂提取,用CO2中和水相,结晶,然后过滤、洗涤和干燥以获得可接受的D,L-蛋氨酸产品;将过滤后的结晶D,L-蛋氨酸母液加热至110-160°C去除CO2,然后循环使用作为吸收氰化氢的液体。本发明的工艺路线适用于连续和清洁生产,基本上不产生废水和废气。
    公开号:
    US20150284323A1
  • 作为试剂:
    描述:
    5-氯-2-甲氧基苯甲酸氯磺酸potassium cyanide氯甲酸乙酯 、 sodium carbonate 、 三乙胺 作用下, 以 二氯甲烷二甲基亚砜 为溶剂, 反应 28.0h, 生成 5-chloro-N-(4-(N-(4-fluorophenyl)sulfamoyl)phenethyl)salicylamide
    参考文献:
    名称:
    一些磺酰胺衍生物与水杨酰胺或茴香酰胺支架结合作为强效 PD-L1 抑制剂的合成及其抗增殖测定
    摘要:
    DOI:
    10.21608/ejchem.2023.239175.8678
点击查看最新优质反应信息

文献信息

  • PYRAZOLO[1,5a]PYRIMIDINE DERIVATIVES AS IRAK4 MODULATORS
    申请人:Arora Nidhi
    公开号:US20120015962A1
    公开(公告)日:2012-01-19
    Compounds of the formula I or II: wherein X, m, Ar, R 1 and R 2 are as defined herein. The subject compounds are useful for treatment of IRAK-mediated conditions.
    式I或II的化合物: 其中X,m,Ar,R1和R2如本文所定义。所述化合物对于治疗IRAK介导的疾病是有用的。
  • Compositions for Treatment of Cystic Fibrosis and Other Chronic Diseases
    申请人:Vertex Pharmaceuticals Incorporated
    公开号:US20150231142A1
    公开(公告)日:2015-08-20
    The present invention relates to pharmaceutical compositions comprising an inhibitor of epithelial sodium channel activity in combination with at least one ABC Transporter modulator compound of Formula A, Formula B, Formula C, or Formula D. The invention also relates to pharmaceutical formulations thereof, and to methods of using such compositions in the treatment of CFTR mediated diseases, particularly cystic fibrosis using the pharmaceutical combination compositions.
    本发明涉及含有上皮钠通道活性抑制剂与至少一种ABC转运蛋白调节剂化合物(A式、B式、C式或D式)的药物组合物。该发明还涉及这些药物配方,以及使用这些组合物治疗CFTR介导的疾病,特别是囊性纤维化的方法。
  • Antithrombotic agents
    申请人:Eli Lilly And Company
    公开号:US06350774B1
    公开(公告)日:2002-02-26
    This application relates to novel compounds of formula (I) (and their pharmaceutically acceptable salts), as defined herein, processes and intermediates for their preparation, pharmaceutical formulations comprising the novel compounds of formula (I), and the use of the compounds of formula (I) as thrombin inhibitors.
    这项申请涉及到式(I)的新化合物(及其药用可接受的盐),如本文所定义,用于它们的制备的工艺和中间体,包括式(I)的新化合物的药物配方,以及将式(I)的化合物用作凝血酶抑制剂。
  • [EN] THIOPHENE DERIVATIVES FOR THE TREATMENT OF DISORDERS CAUSED BY IGE<br/>[FR] DÉRIVÉS DE THIOPHÈNE POUR LE TRAITEMENT DE TROUBLES PROVOQUÉS PAR IGE
    申请人:UCB BIOPHARMA SRL
    公开号:WO2019243550A1
    公开(公告)日:2019-12-26
    Thiophene derivatives of formula (I) and a pharmaceutically acceptable salt thereof are provided. These compounds have utility for the treatment or prevention of disorders caused by IgE, such as allergy, type 1 hypersensitivity or familiar sinus inflammation.
    提供了公式(I)的噻吩衍生物及其药用可接受的盐。这些化合物对于治疗或预防由IgE引起的疾病具有用途,如过敏、1型超敏反应或家族性鼻窦炎。
  • A NEW PEPTIDE DEFORMYLASE INHIBITOR COMPOUND AND MANUFACTURING PROCESS THEREOF
    申请人:KANG Jae Hoon
    公开号:US20100168421A1
    公开(公告)日:2010-07-01
    The present invention relates to the novel antibacterial compounds having potent antibacterial activity as inhibitors of peptide deformylase. This invention further relates to pharmaceutically acceptable salts thereof, to processes for their preparation, and to pharmaceutical compositions containing them as an active ingredient.
    本发明涉及具有强效抗菌活性的新型抗菌化合物,作为肽变形酶抑制剂。该发明还涉及其药用盐,其制备方法,以及含有它们作为活性成分的药物组合物。
查看更多