Synthesis of novel bivalent mimetic ligands for mannose-6-phosphate receptors
摘要:
Mannose-6-phosphate (M6P)-containing N-linked glycans are essential signaling molecules for sorting hydrolases in eukaryotic cells. Their receptors, especially the cation-independent M6P receptors (CI-MPRs), have emerged as promising protein targets for targeted drug delivery for the treatment of lysosomal storage disease and liver fibrosis. In this Letter, we describe the design and synthesis of novel bivalent mimetic ligands for CI-MPRs. We report that for the first time, a newly-discovered binding motif, GlcNAc-M6P, has been incorporated in mimetic ligands. M6P- and GlcNAc-M6P-containing building blocks, equipped with NH2 and CO2H handles, have been prepared and assembled with an ornithine linker through amide coupling reactions. Efficient global deprotection protocols have also been developed which have been showcased in the synthesis of our novel bivalent mimetic ligands. (C) 2013 Elsevier Ltd. All rights reserved.
Synthesis of novel bivalent mimetic ligands for mannose-6-phosphate receptors
摘要:
Mannose-6-phosphate (M6P)-containing N-linked glycans are essential signaling molecules for sorting hydrolases in eukaryotic cells. Their receptors, especially the cation-independent M6P receptors (CI-MPRs), have emerged as promising protein targets for targeted drug delivery for the treatment of lysosomal storage disease and liver fibrosis. In this Letter, we describe the design and synthesis of novel bivalent mimetic ligands for CI-MPRs. We report that for the first time, a newly-discovered binding motif, GlcNAc-M6P, has been incorporated in mimetic ligands. M6P- and GlcNAc-M6P-containing building blocks, equipped with NH2 and CO2H handles, have been prepared and assembled with an ornithine linker through amide coupling reactions. Efficient global deprotection protocols have also been developed which have been showcased in the synthesis of our novel bivalent mimetic ligands. (C) 2013 Elsevier Ltd. All rights reserved.
Mannose-6-phosphate (M6P)-containing N-linked glycans are essential signaling molecules for sorting hydrolases in eukaryotic cells. Their receptors, especially the cation-independent M6P receptors (CI-MPRs), have emerged as promising protein targets for targeted drug delivery for the treatment of lysosomal storage disease and liver fibrosis. In this Letter, we describe the design and synthesis of novel bivalent mimetic ligands for CI-MPRs. We report that for the first time, a newly-discovered binding motif, GlcNAc-M6P, has been incorporated in mimetic ligands. M6P- and GlcNAc-M6P-containing building blocks, equipped with NH2 and CO2H handles, have been prepared and assembled with an ornithine linker through amide coupling reactions. Efficient global deprotection protocols have also been developed which have been showcased in the synthesis of our novel bivalent mimetic ligands. (C) 2013 Elsevier Ltd. All rights reserved.