Synthesis, molecular modeling, and biological evaluation of novel RAD51 inhibitors
摘要:
RAD51 recombinase plays a critical role for cancer cell proliferation and survival. Targeting RAD51 is therefore an attractive strategy for treating difficult-to-treat cancers, e.g. triple negative breast cancers which are often resistant to existing therapeutics. To this end, we have designed, synthesized and evaluated a panel of new RAD51 inhibitors, denoted IBR compounds. Among these compounds, we have identified a novel small molecule RAD51 inhibitor, IBR120, which exhibited a 4.8-fold improved growth inhibition activity in triple negative human breast cancer cell line MBA-MD-468. IBR120 also inhibited the proliferation of a broad spectrum of other cancer cell types. Approximately 10-fold difference between the IC50 values in normal and cancer cells were observed. Moreover, IBR120 was capable of disrupting RAD51 multimerization, impairing homologous recombination repair, and inducing apoptotic cell death. Therefore, these novel RAD51 inhibitors may serve as potential candidates for the development of pharmaceutical strategies against difficult-to-treat cancers. (C) 2015 Elsevier Masson SAS. All rights reserved.
Stereoselective Synthesis of Chiral IBR2 Analogues
摘要:
Two stereoselective routes were developed to synthesize optically pure IBR2 analogues 1-16. The first features addition of N-Boc-3-bromoindole 26 to the sulfinamide 25, providing a 1: 1 ratio of the separable diasteroisomers 27 and 28 in good yield. In a straightforward fashion, the sulfinamides 27 and 28 were conveniently converted into the key amines 39 and 47 over 8 steps, respectively, from which a series of 3,4-dihydroisoquinolinyl IBR2 analogues 1-14 containing fluorinated and trifluoromethylated benzyl groups were prepared. Another route highlights the highly enantioselective addition of indole to the sulfonyl amide 50 with bifunctional aminothioureas 57 and 58 as catalysts. After the reaction conditions were optimized, the desired sulfonyl amides (R)-55 and (S)-55 were obtained in 99% ee and 98% ee, respectively. Acylation of (R)-55 and (S)-55 separately and subsequent allylation gave compounds 60 and 63, respectively, which were further subjected to RCM to furnish compounds 61 and 64 and, after removal of the Boc groups, the desired IBR2 analogues 15 and 16.
The present invention includes novel RAD51 inhibitors. The compounds of the invention may be useful in preventing or treating cancer in a subject in need thereof. The present invention also includes methods of preventing or treating cancer in a subject in need thereof by administering to the subject a therapeutically effective amount of a compound of the invention.
Stereoselective Synthesis of Chiral IBR2 Analogues
作者:Xiao-Long Qiu、Jiewen Zhu、Guikai Wu、Wen-Hwa Lee、A. Richard Chamberlin
DOI:10.1021/jo802607f
日期:2009.3.6
Two stereoselective routes were developed to synthesize optically pure IBR2 analogues 1-16. The first features addition of N-Boc-3-bromoindole 26 to the sulfinamide 25, providing a 1: 1 ratio of the separable diasteroisomers 27 and 28 in good yield. In a straightforward fashion, the sulfinamides 27 and 28 were conveniently converted into the key amines 39 and 47 over 8 steps, respectively, from which a series of 3,4-dihydroisoquinolinyl IBR2 analogues 1-14 containing fluorinated and trifluoromethylated benzyl groups were prepared. Another route highlights the highly enantioselective addition of indole to the sulfonyl amide 50 with bifunctional aminothioureas 57 and 58 as catalysts. After the reaction conditions were optimized, the desired sulfonyl amides (R)-55 and (S)-55 were obtained in 99% ee and 98% ee, respectively. Acylation of (R)-55 and (S)-55 separately and subsequent allylation gave compounds 60 and 63, respectively, which were further subjected to RCM to furnish compounds 61 and 64 and, after removal of the Boc groups, the desired IBR2 analogues 15 and 16.
Synthesis, molecular modeling, and biological evaluation of novel RAD51 inhibitors
作者:Jiewen Zhu、Hongyuan Chen、Xuning Emily Guo、Xiao-Long Qiu、Chun-Mei Hu、A. Richard Chamberlin、Wen-Hwa Lee
DOI:10.1016/j.ejmech.2015.04.021
日期:2015.5
RAD51 recombinase plays a critical role for cancer cell proliferation and survival. Targeting RAD51 is therefore an attractive strategy for treating difficult-to-treat cancers, e.g. triple negative breast cancers which are often resistant to existing therapeutics. To this end, we have designed, synthesized and evaluated a panel of new RAD51 inhibitors, denoted IBR compounds. Among these compounds, we have identified a novel small molecule RAD51 inhibitor, IBR120, which exhibited a 4.8-fold improved growth inhibition activity in triple negative human breast cancer cell line MBA-MD-468. IBR120 also inhibited the proliferation of a broad spectrum of other cancer cell types. Approximately 10-fold difference between the IC50 values in normal and cancer cells were observed. Moreover, IBR120 was capable of disrupting RAD51 multimerization, impairing homologous recombination repair, and inducing apoptotic cell death. Therefore, these novel RAD51 inhibitors may serve as potential candidates for the development of pharmaceutical strategies against difficult-to-treat cancers. (C) 2015 Elsevier Masson SAS. All rights reserved.