[EN] 1, 2, 3-TRIAZOLE CONTAINING PROTEIN KINASE SENSORS<br/>[FR] 1, 2, 3-TRIAZOLE CONTENANT DES DÉTECTEURS DE PROTÉINE KINASE
申请人:MASSACHUSETTS INST TECHNOLOGY
公开号:WO2011025546A1
公开(公告)日:2011-03-03
The present invention generally relates to compositions and methods for determining kinase activity. In some cases, the compositions comprise a triazole heterocycle. In some embodiments, the compositions comprise a quinoline moiety. In one aspect, the present invention is directed to compositions that undergo chelation- enhanced fluorescence (CHEF). In some cases, the compositions may have fluorescence emission spectra with peak maxima greater than 490 nm. The compositions of the present invention can be used, in certain embodiments, to detect phosphorylated substrates and biological processes such as phosphorylation events.
The present invention generally relates to compositions and methods for determining kinase activity. In some cases, the compositions comprise a triazole heterocycle. In some embodiments, the compositions comprise a quinoline moiety. In one aspect, the present invention is directed to compositions that undergo chelation-enhanced fluorescence (CHEF). In some cases, the compositions may have fluorescence emission spectra with peak maxima greater than 490 nm. The compositions of the present invention can be used, in certain embodiments, to detect phosphorylated substrates and biological processes such as phosphorylation events.
The present invention generally relates to compositions and methods for determining kinase activity. In some cases, the compositions comprise a triazole heterocycle. In some embodiments, the compositions comprise a quinoline moiety. In one aspect, the present invention is directed to compositions that undergo chelation-enhanced fluorescence (CHEF). In some cases, the compositions may have fluorescence emission spectra with peak maxima greater than 490 nm. The compositions of the present invention can be used, in certain embodiments, to detect phosphorylated substrates and biological processes such as phosphorylation events.
Synthesis of Red-Shifted 8-Hydroxyquinoline Derivatives Using Click Chemistry and Their Incorporation into Phosphorylation Chemosensors
作者:Juan A. González-Vera、Elvedin Luković、Barbara Imperiali
DOI:10.1021/jo901369k
日期:2009.10.2
Protein phosphorylation is a ubiquitous post-translational modification, and protein kinases, the enzymes that catalyze the phosphoryl transfer, are involved in nearly every aspect of normal, as well as aberrant, cell function. Here we describe the synthesis of novel. red-shifted 8-hydroxyquinoline-based fluorophores and their incorporation into peptidyl kinase activity reporters. Replacement of the sulfonamide group of the sulfonamido-oxine (1, Sox) chromophore, which has been previously used In kinase sensing, by a 1,4-substituted triazole moiety prepared via click chemistry resulted in a significant bathochromic shift in the fluorescence excitation (15 nm) and emission (40 rim) maxima for the Mg2+ chelate. Furthermore, when a click derivative was incorporated into a chemosensor for MK2, the kinase accepted the new substrate as efficiently as the previously reported Sox-based sensor. Taken together, these results extend the utility range of kinase sensors that are based on chelation-enhanced fluorescence (CHEF).