摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 248243-80-3

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
248243-80-3
化学式
C108H90MgN8Zn
mdl
——
分子量
1589.65
InChiKey
OPAORYZXSIRYOZ-KMJKULNASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

反应信息

  • 作为反应物:
    描述:
    在 tris(4-bromophenyl)aminium hexachloroantimonate 作用下, 生成
    参考文献:
    名称:
    分子阵列中相邻或远距离的卟啉阳离子自由基对卟啉激发态的猝灭
    摘要:
    使用静态和时间分辨光谱学研究了在二苯基乙炔连接的卟啉二元组和三元组中相邻或远处的卟啉阳离子自由基对光激发卟啉的猝灭。在所有情况下,激发态淬灭都是高效的(> 99%),并且在相邻位点之间的⩽11ps(通过键合能量/电荷转移)中发生,并且在远端位置之间的⩽55ps中发生(可能是通过超交换辅助能量)转移)。可以使用卟啉-连接基连接基序来调节速率。这些结果应证明在设计中使用电或光化学生成的卟啉阳离子自由基进行分子转换和在分子光子学中的其他应用的阵列很有用。
    DOI:
    10.1016/s0009-2614(01)00452-3
点击查看最新优质反应信息

文献信息

  • Mechanisms of Excited-State Energy-Transfer Gating in Linear versus Branched Multiporphyrin Arrays
    作者:Robin K. Lammi、Richard W. Wagner、Arounaguiry Ambroise、James R. Diers、David F. Bocian、Dewey Holten、Jonathan S. Lindsey
    DOI:10.1021/jp010857y
    日期:2001.6.1
    We have investigated electrochemical switching of excited-state electronic energy migration in two optoelectronic gates with different architectures. Each gate consists of diarylethyne-linked subunits: a boron-dipyrrin (BDPY) input unit, a Zn-porphyrin transmission unit, a free-base-porphyrin (Fb-porphyrin) output unit, and a Mg-porphyrin redox-switched site connected either to the Fo porphyrin (linear gate) or to the Zn porphyrin (branched. T gate). Both the linear and branched architectures show Fb-porphyrin emission when the Mg porphyrin is neutral and nearly complete quenching when the ME porphyrin is oxidized to the Jr-cation radical. To determine the mechanism of gating, we undertook a systematic photophysical study of the gates and their dyad and triad components in neutral and oxidized forms, using static and time-resolved optical spectroscopy. Two types of photoinduced energy-transfer (and/or charge-transfer) processes are involved in gate operation: transfer between adjacent subunits and transfer between nonadjacent subunits. All of the individual energy-transfer steps that funnel input light energy to the fluorescent output element in the neutral systems are highly efficient, occurring primarily by a through-bond mechanism. Similarly efficient energy/transfer processes occur between the BDPY and the Zn and Fo porphyrins in the oxidized systems, but are followed by rapid and efficient energy/charge transfer to the redox-switched site and consequent nonradiative deactivation. Energy/charge transfer between nonadjacent porphyrins, which occurs principally by superexchange, is crucial to the operation of the T gate. Collectively, our studies elucidate the photophysics of gating and afford great flexibility and control in the design of more elaborate arrays for molecular photonics applications.
查看更多