摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-biphenylmethyl β-D-galactopyranosyl-(1->3)-β-D-glucopyranoside | 1093186-59-4

中文名称
——
中文别名
——
英文名称
2-biphenylmethyl β-D-galactopyranosyl-(1->3)-β-D-glucopyranoside
英文别名
2-biphenylmethyl β-D-Galp-(1->3)-β-D-Glcp
2-biphenylmethyl β-D-galactopyranosyl-(1->3)-β-D-glucopyranoside化学式
CAS
1093186-59-4
化学式
C25H32O11
mdl
——
分子量
508.522
InChiKey
YYOUQIBKJPGBIU-PYNXBPQESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.51
  • 重原子数:
    36.0
  • 可旋转键数:
    8.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.52
  • 拓扑面积:
    178.53
  • 氢给体数:
    7.0
  • 氢受体数:
    11.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Engineering of glucoside acceptors for the regioselective synthesis of β-(1→3)-disaccharides with glycosynthases
    摘要:
    Glycosynthase mutants obtained from Thermotoga maritima were able to catalyze the regioselective synthesis of aryl beta-D-Galp-(1 -> 3)-beta-D-Glcp and aryl beta-D-Glcp-(1 -> 3)-beta-D-Glcp in high yields (up to 90 %) using aryl beta-D-glucosides as acceptors. The need for an aglyconic aryl group was rationalized by molecular modeling calculations, which have emphasized a high stabilizing interaction of this group by stacking with W312 of the enzyme. Unfortunately, the deprotection of the aromatic group of the disaccharides was not possible without partial hydrolysis of the glycosidic bond. The replacement of aryl groups by benzyl ones could offer the opportunity to deprotect the anomeric position under very mild conditions. Assuming that benzyl acceptors could preserve the stabilizing stacking, benzyl beta-D-glucoside firstly assayed as acceptor resulted in both poor yields and poor regioselectivity. Thus, we decided to undertake molecular modeling calculations in order to design which suitable substituted benzyl acceptors could be used. This study resulted in the choice of 2-biphenylmethyl beta-D-glucopyranoside. This choice was validated experimentally, since the corresponding beta-(1 -> 3) disaccharide was obtained in good yields and with a high regioselectivity. At the same time, we have shown that phenyl 1-thio-beta-D-glucopyranoside was also an excellent substrate leading to similar results as those obtained with the O-phenyl analogue. The NBS deprotection of the S-phenyl group afforded the corresponding disaccharide quantitatively. (C) 2008 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.carres.2008.07.018
  • 作为产物:
    描述:
    α-galactosyl fluoride2-biphenylmethyl β-D-glucopyranoside 在 E338 mutant TtβGly glycosidase from Thermus thermophilus 作用下, 反应 6.5h, 以38 mg的产率得到2-biphenylmethyl β-D-galactopyranosyl-(1->3)-β-D-glucopyranoside
    参考文献:
    名称:
    Engineering of glucoside acceptors for the regioselective synthesis of β-(1→3)-disaccharides with glycosynthases
    摘要:
    Glycosynthase mutants obtained from Thermotoga maritima were able to catalyze the regioselective synthesis of aryl beta-D-Galp-(1 -> 3)-beta-D-Glcp and aryl beta-D-Glcp-(1 -> 3)-beta-D-Glcp in high yields (up to 90 %) using aryl beta-D-glucosides as acceptors. The need for an aglyconic aryl group was rationalized by molecular modeling calculations, which have emphasized a high stabilizing interaction of this group by stacking with W312 of the enzyme. Unfortunately, the deprotection of the aromatic group of the disaccharides was not possible without partial hydrolysis of the glycosidic bond. The replacement of aryl groups by benzyl ones could offer the opportunity to deprotect the anomeric position under very mild conditions. Assuming that benzyl acceptors could preserve the stabilizing stacking, benzyl beta-D-glucoside firstly assayed as acceptor resulted in both poor yields and poor regioselectivity. Thus, we decided to undertake molecular modeling calculations in order to design which suitable substituted benzyl acceptors could be used. This study resulted in the choice of 2-biphenylmethyl beta-D-glucopyranoside. This choice was validated experimentally, since the corresponding beta-(1 -> 3) disaccharide was obtained in good yields and with a high regioselectivity. At the same time, we have shown that phenyl 1-thio-beta-D-glucopyranoside was also an excellent substrate leading to similar results as those obtained with the O-phenyl analogue. The NBS deprotection of the S-phenyl group afforded the corresponding disaccharide quantitatively. (C) 2008 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.carres.2008.07.018
点击查看最新优质反应信息

同类化合物

(±)17,18-二HETE (±)-辛酰肉碱氯化物 (Z)-5-辛烯甲酯 (Z)-4-辛烯酸 (R)-甲羟戊酸锂盐 (R)-普鲁前列素,游离酸 (R)-3-烯丙氧基-1,2-丙二醇 (R,R)-半乳糖苷 (E)-4-庚烯酸 (E)-4-壬烯酸 (E)-4-十一烯酸 (9Z,12E)-十八烷二烯酸甲酯 (6E)-8-甲基--6-壬烯酸甲基酯-d3 (5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (3R,6S)-rel-8-[2-(3-呋喃基)-1,3-二氧戊环-2-基]-3-羟基-2,6-二甲基-4-辛酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (1aR,4E,7aS,8R,10aS,10bS)-8-[((二甲基氨基)甲基]-2,3,6,7,7a,8,10a,10b-八氢-1a,5-二甲基-氧杂壬酸[9,10]环癸[1,2-b]呋喃-9(1aH)-酮 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙胆二糖 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸衍生物1 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸溴乙酯 齐墩果酸二甲胺基乙酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI)