摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(2,5-dimethoxy-4-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)phenyl)-2-mercaptoacetamide | 1276022-41-3

中文名称
——
中文别名
——
英文名称
N-(2,5-dimethoxy-4-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)phenyl)-2-mercaptoacetamide
英文别名
——
N-(2,5-dimethoxy-4-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)phenyl)-2-mercaptoacetamide化学式
CAS
1276022-41-3
化学式
C16H23NO8S
mdl
——
分子量
389.427
InChiKey
MFLIJEJSEGQFHM-JZYAIQKZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.91
  • 重原子数:
    26.0
  • 可旋转键数:
    6.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.56
  • 拓扑面积:
    137.71
  • 氢给体数:
    6.0
  • 氢受体数:
    9.0

反应信息

  • 作为产物:
    参考文献:
    名称:
    Epimeric Monosaccharide−Quinone Hybrids on Gold Electrodes toward the Electrochemical Probing of Specific Carbohydrate−Protein Recognitions
    摘要:
    Carbohydrates represent one of the most significant natural building blocks, which govern numerous critical biological and pathological processes through specific carbohydrate-receptor interactions on the cell surface. We present here a new class of electrochemical probes based on gold surface-coated epimeric monosaccharide-quinone hybrids toward the ingenious detection of specific epimeric carbohydrate-protein interactions. Glucose and galactose, which represent a pair of natural monosaccharide C4 epimers, were used to closely and solidly conjugate with the 1,4-dimethoxybenzene moiety via a single C-C glycosidic bond, followed by the introduction of a sulfhydryl anchor. The functionalized aryl C-glycosides were sequentially coated on the gold electrode via the self-assembled monolayer (SAM) technique. X-ray photoelectron spectroscopy (XPS) was used to confirm the SAM formation, by which different binding energies (BE) between the glucosyl and the galactosyl SAMs on the surface, probably rendered by their epimeric identity, were observed. The subsequent electrochemical deprotection process readily furnished the surface-confined quinone/hydroquinone redox couple, leading to the formation of electrochemically active epimeric monosaccharide-quinone SAMs on the gold electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) used for the detection of specific sugar-lectin interactions indicated that the addition of specific lectin to the corresponding monosaccharide-quinone surface, i.e., concanavalin A (Con A) to the glucosyl SAM and peanut agglutinin (PNA) to the galactosyl SAM, resulted in an obvious decrease in peak current, whereas the addition of nonspecific lectins to the same SAMs gave very minor current variations. Such data suggested our uniquely constructed gold surface coated by sugar-quinone hybrids to be applicable as electrochemical probes for the detection of specific sugar-protein interactions, presumably leading to a new electrochemistry platform toward the study of carbohydrate-mediated intercellular recognitions.
    DOI:
    10.1021/ja110478j
点击查看最新优质反应信息