Design, Synthesis, and Biological Evaluation of a Series of Fluoroquinoanthroxazines with Contrasting Dual Mechanisms of Action against Topoisomerase II and G-Quadruplexes
摘要:
Topoisomerase inhibitors are important and clinically effective drugs, while G-quadruplex-interactive compounds that disrupt telomere maintenance mechanisms have yet to be proven useful in the clinic. If G-quadruplex-interactive compounds are to be clinically useful, it will most likely be in combination with more established cytotoxic agents. We have previously reported on a family of topoisomerase II inhibitors that also interact with G-quadruplexes. On the basis of previously established structure-activity relationships (SARs) for compounds that are able to inhibit topoisomerase II or interact with G-quadruplex to varying degrees, we have now designed and synthesized four new fluoroquinoanthroxazines (FQAs) that have different profiles of mixed topoisomerase II poisoning effects and G-quadruplex interactions. The biological profiles of the four new compounds were determined with respect to G-quadruplex interaction (polymerase stop and photocleavage assays) and topoisomerase II interaction (DNA cleavage and kDNA decatenation assays), alongside cytotoxicity tests with matched pairs of topoisomerase II-resistant and topoisomerase II-sensitive cells and with telomerase (+) and ALT (+) cell lines (ALT = alternative lengthening of telomeres). From this study, we have identified two FQAs with sharply contrasting profiles of potent G-quadruplex interaction with a weak topoisomerase II poisoning effect, and vice versa, for further evaluation to determine the optimum combination of these activities in subsequent in vivo studies.
Design, Synthesis, and Biological Evaluation of a Series of Fluoroquinoanthroxazines with Contrasting Dual Mechanisms of Action against Topoisomerase II and G-Quadruplexes
作者:Mu-Yong Kim、Wenhu Duan、Mary Gleason-Guzman、Laurence H. Hurley
DOI:10.1021/jm0203377
日期:2003.2.1
Topoisomerase inhibitors are important and clinically effective drugs, while G-quadruplex-interactive compounds that disrupt telomere maintenance mechanisms have yet to be proven useful in the clinic. If G-quadruplex-interactive compounds are to be clinically useful, it will most likely be in combination with more established cytotoxic agents. We have previously reported on a family of topoisomerase II inhibitors that also interact with G-quadruplexes. On the basis of previously established structure-activity relationships (SARs) for compounds that are able to inhibit topoisomerase II or interact with G-quadruplex to varying degrees, we have now designed and synthesized four new fluoroquinoanthroxazines (FQAs) that have different profiles of mixed topoisomerase II poisoning effects and G-quadruplex interactions. The biological profiles of the four new compounds were determined with respect to G-quadruplex interaction (polymerase stop and photocleavage assays) and topoisomerase II interaction (DNA cleavage and kDNA decatenation assays), alongside cytotoxicity tests with matched pairs of topoisomerase II-resistant and topoisomerase II-sensitive cells and with telomerase (+) and ALT (+) cell lines (ALT = alternative lengthening of telomeres). From this study, we have identified two FQAs with sharply contrasting profiles of potent G-quadruplex interaction with a weak topoisomerase II poisoning effect, and vice versa, for further evaluation to determine the optimum combination of these activities in subsequent in vivo studies.
Bogdanov,S.V.; Shibryaeva,L.S., Journal of General Chemistry of the USSR, 1961, vol. 31, p. 479 - 484