摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(5-phosphonato-beta-D-ribosyl)anthranilate

中文名称
——
中文别名
——
英文名称
N-(5-phosphonato-beta-D-ribosyl)anthranilate
英文别名
2-[[(2R,3R,4S,5R)-3,4-dihydroxy-5-(phosphonatooxymethyl)oxolan-2-yl]amino]benzoate
N-(5-phosphonato-beta-D-ribosyl)anthranilate化学式
CAS
——
化学式
C12H13NO9P
mdl
——
分子量
346.21
InChiKey
PMFMJXPRNJUYMB-GWOFURMSSA-K
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    23
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.42
  • 拓扑面积:
    174
  • 氢给体数:
    3
  • 氢受体数:
    10

反应信息

  • 作为反应物:
    描述:
    N-(5-phosphonato-beta-D-ribosyl)anthranilate 生成 1-(2-carboxylatophenylamino)-1-deoxy-D-ribulose 5-phosphate(3-)
    参考文献:
    名称:
    来自滨海嗜热菌的磷酸核糖基邻氨基苯甲酸酯异构酶是一种非常稳定和活跃的同型二聚体。
    摘要:
    嗜热微生物的代谢可以在接近100摄氏度的温度下正常运行。因此,它们既具有热稳定酶,又具有处理不稳定代谢物的机制。我们想了解来自嗜热嗜热菌嗜热栖热菌(Thermotoga maritima)的稳定和活性磷酸核糖基邻氨基苯甲酸异构酶(tPRAI)在其最佳生长温度80摄氏度下的情况,以及其热不稳定底物N-(5'-磷酸核糖基)-邻氨基苯甲酸(PRA),受保护免于快速分解。为此,在大肠杆菌中异源表达了海生螺旋体的trpF基因,并纯化了tP​​RAI。与大多数嗜温菌的PRAI(具有八倍的βα(或TIM)桶形折叠倍数的单体)相反,tPRAI是同型二聚体。在高达95摄氏度的温度,酸化至pH 3.2以及存在和不存在去污剂的情况下,它都具有很强的抗灭活性。在37摄氏度时,tPRAI在其生理温度下的活性比大肠杆菌(ePRAI)酶高35倍。tPRAI的这种高催化效率很可能会在80摄氏度时PRA的快速自发水解成功完
    DOI:
    10.1002/pro.5560051006
  • 作为产物:
    描述:
    PRPPO2CC6H4NH2-o(1-) 在 recombinant anthranilate phosphoribosyl transferase from Mycobacterium tuberculosis 、 ammonium bicarbonate 、 magnesium chloride 作用下, 以 重水 为溶剂, 生成 N-(5-phosphonato-beta-D-ribosyl)anthranilate
    参考文献:
    名称:
    备选底物在结核分枝杆菌的邻氨基苯甲酸酯磷酸核糖基转移酶催化的反应中显示了催化循环和关键结合事件。
    摘要:
    色氨酸生物合成所需的AnPRT(邻氨基苯甲酸磷酸核糖基转移酶)对于结核分枝杆菌(Mtb)的毒性至关重要。AnPRT催化从PRPP(5'-磷酸核糖基-1'-焦磷酸)到邻氨基苯甲酸酯的Mg2 +依赖性转移,形成PRA(5'-磷酸核糖基邻氨基苯甲酸酯)。已显示Mtb-AnPRT催化顺序反应,并观察到邻氨基苯甲酸显着抑制底物。已显示抗分枝杆菌氟邻氨基苯甲酸酯和甲基取代的类似物可作为Mtb-AnPRT的替代底物,产生相应的取代PRA产品。与邻氨基苯甲酸类似物复合的酶的结构揭示了邻氨基苯甲酸的两个不同的结合位点。一个站点位于8Å(1Å= 0)以上。从PRPP到通往活性部位的隧道入口处约1 nm),而在第二个内部部位,邻氨基苯甲酸酯与PRPP相邻,处于催化相关位置。将类似物浸泡一段可变的时间,可以证明邻氨基苯甲酸酯在从外部位点转移到内部催化位点的过程中位于瞬态位置。已显示PRPP和Mg2 +的结合与两个
    DOI:
    10.1042/bj20140209
点击查看最新优质反应信息

文献信息

  • Purification, characterization and crystallization of thermostable anthranilate phosphoribosyltransferase from<i>Sulfolobus solfataricus</i>
    作者:Andreas Ivens、Olga Mayans、Halina Szadkowski、Matthias Wilmanns、Kasper Kirschner
    DOI:10.1046/j.1432-1327.2001.02102.x
    日期:2001.4.15
    Anthranilate phosphoribosyltransferase (TrpD; EC 2.4.2.18) from the hyperthermophilic archaeon Sulfolobus solfataricus (ssTrpD) was expressed in Escherichia coli, purified and crystallized. Analytical gel permeation chromatography revealed a homodimeric composition of the enzyme. The steady‐state kinetic characteristics suggest tight binding of the substrate anthranilic acid and efficient catalysis at the physiological growth temperature of S. solfataricus. Crystals of ssTrpD diffract to better than 2.6 Å resolution and preliminary X‐ray characterization was carried out. The crystals are suitable for structure determination.
  • Tryptophan Biosynthetic Genes in Eukaryotic Microorganisms
    作者:R Hutter、P Niederberger、J A DeMoss
    DOI:10.1146/annurev.mi.40.100186.000415
    日期:1986.10
    In recent years more information about tryptophan biosynthesis in eukaryotic microorganisms has become available. The emphasis has been on genetics and biochemistry of the pathway. Eukaryotes manifest a trend toward fewer genes and toward multifunctional proteins, while prokaryotes have a greater tendency toward separate activity domains but the genes tend to be clustered genetically. Cloning of various structural tryptophan biosynthetic genes and studies on their expression in homologous and heterologous hosts have made it possible to analyze promoter structures in detail and to define structural elements involved in regulated gene expression. Comparisons of homologous genes from different organisms have highlighted the conservation of the activity domains or parts therefrom involved in the catalysis of single steps. These studies also point to a stringent maintenance of domains responsible for protein-protein aggregation. Physiological studies will be facilitated by the availability of single cloned genes and especially the artificial gene cluster containing all five TRP genes from yeast. The range of physiological manipulation has thus been enormously broadened. With chromosomal mutations it has been possible to study primarily downward modulation of a pathway. We can now initiate studies on upward modulation, since enzyme levels appear to increase in proportion to gene dose. The new range of downward and upward modulation in the levels of single enzymes and combinations of enzymes may contribute to a better understanding of flux regulation and its influence on the overall physiology of an organism.
  • Two‐fold repeated (βα) <sub>4</sub> half‐barrels may provide a molecular tool for dual substrate specificity
    作者:Jochen Kuper、Catharina Doenges、Matthias Wilmanns
    DOI:10.1038/sj.embor.7400330
    日期:2005.2
    Some bacterial genomes contain an incomplete set of genes encoding phosphoribosyl isomerases, raising the question of whether there exists broadened substrate specificity for the missing gene products. To investigate the underlying molecular principles of this hypothesis, we have determined the crystal structure of the bifunctional enzyme PriA from Streptomyces coelicolor at 1.8 Angstrom resolution. It consists of a (betaalpha)(8)-barrel fold that is assembled by two symmetric (betaalpha)(4) half-barrels. The structure shows how its active site may catalyse the isomerization reactions of two different substrates, and we provide a plausible model of how the smaller of the two substrates could be bound in two different orientations. Our findings expand the half-barrel ancestor concept by demonstrating that symmetry-related half-barrels could provide a smart solution to cope with dual substrate specificity. The data may help to unravel molecular rationales regarding how organisms with miniature genomes can keep central biological pathways functional.
  • Braus G.H.; Luger K.; Paravicini G., J Biol Chem, 1988, 0021-9258, 7868-75
    作者:Braus G.H.、Luger K.、Paravicini G.、Schmidheini T.、Kirschner K.、Hutter R.
    DOI:——
    日期:——
查看更多