The α-Thioglycoligase Derived from a GH89 α-<i>N</i>-Acetylglucosaminidase Synthesises α-<i>N</i>-Acetylglucosamine-Based Glycosides of Biomedical Interest
acceptors. The synthetic potential of the Glu483 alanine mutant as an α‐thioglycoligase – only the third biocatalyst with this stereospecificity reported to date, and the first selective for the N‐acetylglucosamine moiety – was demonstrated by producing for the first time N‐acetyl‐α‐d‐glucosaminyl azide and N‐acetylglucosamine α‐thioglycosides in high yields. To showcase the application of such compounds
我们在这里报告了一种新型α-硫代糖苷酶的制备方法,该酶可用于快速高效合成基于α - N-乙酰氨基葡萄糖的糖苷。以GH89家族产气荚膜梭菌的α - N-乙酰氨基葡糖苷酶(根据碳水化合物活性酶分类)为起点,我们制备了谷氨酸/酸残基483中的突变体,发现它们具有不同的合成效率(最大)。在活化的供体和合适的受体存在下,在24小时后的收率> 80%。Glu483丙氨酸突变体作为α-硫代糖苷酸酶的合成潜力–迄今为止,仅报道了具有这种立体特异性的第三种生物催化剂,并且对N具有选择性乙酰氨基葡萄糖基部分-被产生用于首次展示ñ -乙酰基α- d -glucosaminyl叠氮化物和Ñ以高收率乙酰氨基葡萄糖α-硫代糖苷。为了展示此类化合物的应用,我们证明了它们提供了野生型CpGH89保护,使其免受热解折叠,证明了它们作为药理分子伴侣治疗粘多糖贮积症IIIB(Sanfilippo综合征)的潜力。
Synthesis of Deoxyglycosides by Desulfurization under UV Light
performed to develop a highly efficient method whereby desulfurization could be completed in 0.5 h under ultraviolet light, at room temperature, and in the presence of trialkylphosphine. Using this method, deoxyglycosides could be produced from sulfur-containing glycosides in almost quantitative yields. The much higher reactivity of desulfurization with triethylphosphine versus that with triethylphosphite
Synthesis of 4-thio-d-glucopyranose and interconversion to 4-thio-d-glucofuranose
作者:Jack Porter、Marcelo A. Lima、Imlirenla Pongener、Gavin J. Miller
DOI:10.1016/j.carres.2023.108759
日期:2023.2
preference for interconversion of the pyranose to 4-thio-d-glucofuranose. Accordingly, we present an improved method to access both bis(4-thio-d-glucopyranoside)-4,4′-disulfide and 4-thio-d-glucofuranose from a single precursor, demonstrating that the latter compound can be accessed from the former using a dithiothreitol controlled reduction of the disulfide. The dithiothreitol-mediated interconversion between
含硫糖苷为包含在非规范聚糖序列中提供了令人兴奋的前景,特别是作为化学糖生物学和基于碳水化合物的治疗开发的探针。在这种情况下,我们需要获得 4-硫代-d-吡喃葡萄糖并寻求其化学合成。由于无法以均质形式分离这种材料,我们观察到吡喃糖相互转化为 4-硫代-d-呋喃葡萄糖的热力学偏好。因此,我们提出了一种改进的方法来获取双(4-硫-d-吡喃葡萄糖苷)-4,4'-二硫化物和 4-硫-d-来自单一前体的呋喃葡萄糖,证明可以使用二硫苏糖醇控制二硫化物的还原从前者获得后者化合物。通过1 H NMR 光谱在 24 小时内监测二硫苏糖醇介导的吡喃糖(单体和二硫化物)和呋喃糖形式之间的相互转化。获得这些材料将支持获得葡萄糖的含硫模拟物及其衍生物,例如糖核苷酸。