摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methanamine | 944905-62-8

中文名称
——
中文别名
——
英文名称
[1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methanamine
英文别名
[1-(4-bromophenyl)triazol-4-yl]methanamine
[1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methanamine化学式
CAS
944905-62-8
化学式
C9H9BrN4
mdl
——
分子量
253.101
InChiKey
IOUQRNUKSBTRPN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    14
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.11
  • 拓扑面积:
    56.7
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    [1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methanamine(+)-usnic acid乙醇 为溶剂, 以47%的产率得到(E)-6-acetyl-2-(1-(((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)amino)ethylidene)-7,9-dihydroxy-8,9b-dimethyldibenzo[b,d]furan-1,3(2H,9bH)-dione
    参考文献:
    名称:
    Synthesis and Biological Evaluation of (+)-Usnic Acid Derivatives as Potential Anti-Toxoplasma gondii Agents
    摘要:
    Six series of (+)-usnic acid derivatives were synthesized. The IC50 values of these compounds were determined in T. gondii infected HeLa cells (mu M) and in HeLa cells (mu M), and their selectivity indexes (SI) were calculated. In vitro, most of the derivatives tested in this study exhibited more anti activity than that of the parent compound (+)-usnic acid and the positive control drugs. Among these derivatives, methyl (E)-(1-(6-acetyl-7,9-dihydroxy-8,9b-dimethyl-1,3-dioxo-3,9b-dihydrodibenzo[b,d]furan-2(1H)-ylidene)ethyl)phenylalaninate (D3) showed the most effective anti-T. gondii activity (selectivity >2.77). In comparison with the clinically used positive control drugs sulfadiazine (selectivity 1.15), pyrimethamine (selectivity 0.89), spiramycin (selectivity 0.72), and the lead compound (+)-usnic acid (selectivity 0.96), D3 showed better results in vitro. Furthermore, D3 and (E)-6-acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-(quinolin-6-ylamino)ethylidene)dibenzo[b,d]furan-1,3-(2H,9bH)-dione (F3) had greater inhibitory effects on T. gondii (inhibition rates 76.0% and 64.6%) in vivo in comparison to spiramycin (inhibition rate 55.2%); in the peritoneal cavity of mice, the number of tachyzoites was significantly reduced (p < 0.001) in vivo. Additionally, some biochemical parameters were measured and spleen indexes were comprehensively evaluated, and the results indicated that mice treated with both compound D3 and compound F3 showed reduced hepatotoxicity and significantly enhanced antioxidative effects in comparison to the normal group. Granuloma and cyst formation were effected by the inhibition of compound D3 and compound F3 in liver sections. Overall, these results indicated that D3 and F3 for use as anti-T. gondii agents are promising lead compounds.
    DOI:
    10.1021/acs.jafc.9b02173
  • 作为产物:
    描述:
    4-溴苯胺盐酸 、 sodium azide 、 copper(ll) sulfate pentahydratesodium ascorbate 、 sodium nitrite 作用下, 以 叔丁醇 为溶剂, 反应 2.0h, 生成 [1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl]methanamine
    参考文献:
    名称:
    Synthesis and Biological Evaluation of (+)-Usnic Acid Derivatives as Potential Anti-Toxoplasma gondii Agents
    摘要:
    Six series of (+)-usnic acid derivatives were synthesized. The IC50 values of these compounds were determined in T. gondii infected HeLa cells (mu M) and in HeLa cells (mu M), and their selectivity indexes (SI) were calculated. In vitro, most of the derivatives tested in this study exhibited more anti activity than that of the parent compound (+)-usnic acid and the positive control drugs. Among these derivatives, methyl (E)-(1-(6-acetyl-7,9-dihydroxy-8,9b-dimethyl-1,3-dioxo-3,9b-dihydrodibenzo[b,d]furan-2(1H)-ylidene)ethyl)phenylalaninate (D3) showed the most effective anti-T. gondii activity (selectivity >2.77). In comparison with the clinically used positive control drugs sulfadiazine (selectivity 1.15), pyrimethamine (selectivity 0.89), spiramycin (selectivity 0.72), and the lead compound (+)-usnic acid (selectivity 0.96), D3 showed better results in vitro. Furthermore, D3 and (E)-6-acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-(quinolin-6-ylamino)ethylidene)dibenzo[b,d]furan-1,3-(2H,9bH)-dione (F3) had greater inhibitory effects on T. gondii (inhibition rates 76.0% and 64.6%) in vivo in comparison to spiramycin (inhibition rate 55.2%); in the peritoneal cavity of mice, the number of tachyzoites was significantly reduced (p < 0.001) in vivo. Additionally, some biochemical parameters were measured and spleen indexes were comprehensively evaluated, and the results indicated that mice treated with both compound D3 and compound F3 showed reduced hepatotoxicity and significantly enhanced antioxidative effects in comparison to the normal group. Granuloma and cyst formation were effected by the inhibition of compound D3 and compound F3 in liver sections. Overall, these results indicated that D3 and F3 for use as anti-T. gondii agents are promising lead compounds.
    DOI:
    10.1021/acs.jafc.9b02173
点击查看最新优质反应信息

文献信息

  • ‘Click’ assembly of selective inhibitors for MAO-A
    作者:Zhao Jia、Qing Zhu
    DOI:10.1016/j.bmcl.2010.08.104
    日期:2010.11
    In this Letter, an efficient strategy for the fast construction of 108 compounds library was developed using click chemistry. The fingerprint of inhibitory activity toward MAO-A/B against this library was obtained, and four hit compounds were identified as selective inhibitors toward MAO-A. Docking study was carried out to demonstrate the binding mode between a9 and MAO-A/B, and the result reveals that a9 localized in the 'aromatic cage' and oriented to establish pi-pi stacking interactions with Tyr407, Tyr444 and FAD in MAO-A rather than in MAO-B. (C) 2010 Elsevier Ltd. All rights reserved.
  • Synthesis and Biological Evaluation of (+)-Usnic Acid Derivatives as Potential Anti-<i>Toxoplasma gondii</i> Agents
    作者:Hong-Yan Guo、ChunMei Jin、Hai-Ming Zhang、Chun-Mei Jin、Qing-Kun Shen、Zhe-Shan Quan
    DOI:10.1021/acs.jafc.9b02173
    日期:2019.8.28
    Six series of (+)-usnic acid derivatives were synthesized. The IC50 values of these compounds were determined in T. gondii infected HeLa cells (mu M) and in HeLa cells (mu M), and their selectivity indexes (SI) were calculated. In vitro, most of the derivatives tested in this study exhibited more anti activity than that of the parent compound (+)-usnic acid and the positive control drugs. Among these derivatives, methyl (E)-(1-(6-acetyl-7,9-dihydroxy-8,9b-dimethyl-1,3-dioxo-3,9b-dihydrodibenzo[b,d]furan-2(1H)-ylidene)ethyl)phenylalaninate (D3) showed the most effective anti-T. gondii activity (selectivity >2.77). In comparison with the clinically used positive control drugs sulfadiazine (selectivity 1.15), pyrimethamine (selectivity 0.89), spiramycin (selectivity 0.72), and the lead compound (+)-usnic acid (selectivity 0.96), D3 showed better results in vitro. Furthermore, D3 and (E)-6-acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-(quinolin-6-ylamino)ethylidene)dibenzo[b,d]furan-1,3-(2H,9bH)-dione (F3) had greater inhibitory effects on T. gondii (inhibition rates 76.0% and 64.6%) in vivo in comparison to spiramycin (inhibition rate 55.2%); in the peritoneal cavity of mice, the number of tachyzoites was significantly reduced (p < 0.001) in vivo. Additionally, some biochemical parameters were measured and spleen indexes were comprehensively evaluated, and the results indicated that mice treated with both compound D3 and compound F3 showed reduced hepatotoxicity and significantly enhanced antioxidative effects in comparison to the normal group. Granuloma and cyst formation were effected by the inhibition of compound D3 and compound F3 in liver sections. Overall, these results indicated that D3 and F3 for use as anti-T. gondii agents are promising lead compounds.
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺