Synthesis and Structure−Activity Relationship of the First Nonpeptidergic Inverse Agonists for the Human Cytomegalovirus Encoded Chemokine Receptor US28
摘要:
US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 {5-(4-(4-chlorophenyl)-4-hydroxy-piperidin-1-yl)-2,2-diphenylpentanenitrile} as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.
Structure–Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D<sub>2</sub> Receptor
作者:Tim J. Fyfe、Barrie Kellam、David A. Sykes、Ben Capuano、Peter J. Scammells、J. Robert Lane、Steven J. Charlton、Shailesh N. Mistry
DOI:10.1021/acs.jmedchem.9b00864
日期:2019.11.14
a typical antipsychotic drug (APD) associated with an increased risk of extrapyramidal side effects (EPSs) and hyperprolactinemia relative to atypical APDs such as clozapine. Both drugs are dopamine D2 receptor (D2R) antagonists, with contrasting kinetic profiles. Haloperidol displays fast association/slow dissociation at the D2R, whereas clozapine exhibits relatively slow association/fast dissociation
Provided herein are antifungal compositions and methods of use thereof. The antifungal compositions include an antifungal agent and an antipsychotic agent or an antihistamine. The methods of use thereof include administering a composition including an antifungal agent and an antipsychotic or an antihistamine to a plant or animal in need thereof.
Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from <i>Mycobacterium tuberculosis</i> to overcome kanamycin resistance
作者:Ankita Punetha、Keith D. Green、Atefeh Garzan、Nishad Thamban Chandrika、Melisa J. Willby、Allan H. Pang、Caixia Hou、Selina Y. L. Holbrook、Kyle Krieger、James E. Posey、Tanya Parish、Oleg V. Tsodikov、Sylvie Garneau-Tsodikova
DOI:10.1039/d1md00239b
日期:——
structure of the Eis-haloperidol (1) complex, which guided synthesis of 34 analogues. The structure–activity relationship study showed that in addition to haloperidol (1), eight analogues, some of which were smaller than 1, potently inhibited Eis (IC50 ≤ 1 μM). Crystal structures of Eis in complexes with three potent analogues and droperidol (DPD), an antiemetic and antipsychotic, were determined. Three
结核病 (TB) 由结核分枝杆菌( Mtb ) 引起,是一种致命的细菌性疾病。Mtb的耐药菌株使根除结核病成为一项艰巨的任务。Mtb过度表达增强的细胞内存活 (Eis) 蛋白赋予了对二线抗生素卡那霉素 (KAN) 的抗性。Eis 是一种乙酰转移酶,可将 KAN 乙酰化,使其抗菌功能失活。开发 Eis 抑制剂作为 KAN 辅助治疗剂是预防和克服 KAN 耐药性的一条有吸引力的途径。我们发现抗精神病药物氟哌啶醇 (HPD, 1 ) 是一种有效的 Eis 抑制剂,IC 50= 0.39 ± 0.08 μM。我们确定了 Eis-氟哌啶醇 ( 1 ) 复合物的晶体结构,该复合物指导了 34 种类似物的合成。构效关系研究表明,除氟哌啶醇 ( 1 ) 外,还有 8 种类似物,其中一些小于1,可有效抑制 Eis (IC 50 ≤ 1 μM)。确定了 Eis 与三种强效类似物和氟哌利多 (DPD)(一种
EIS INHIBITORS
申请人:University of Kentucky Research Foundation
公开号:US20180162867A1
公开(公告)日:2018-06-14
Compounds and compositions are disclosed, which are useful as inhibitors of acetyltransferase Eis, a mediator of kanamycin resistance in
Mycobacterium tuberculosis.
The present invention relates to a central nervous system-acting substituted butyrophenones. These compounds are useful in antipsychotic medications for psychosis, including schizophrenia, but especially for L-DOPA-induced psychosis, while having low or no risk of eliciting extrapyramidal side effects, hyperprolactinemia or tardive dyskinesia.