作者:Naoki Yoshikawa、Yoichi M. A. Yamada、Jagattaran Das、Hiroaki Sasai、Masakatsu Shibasaki
DOI:10.1021/ja990031y
日期:1999.5.1
The direct catalytic asymmetric aldol reaction using aldehydes and unmodified ketones is described for the first time herein. This reaction was first found to be promoted by 20 mol % of anhydrous (R)-LLB (L = lanthanum, L = lithium, B = (R)-binaphthol moiety) at -20 OC, giving a variety of aldol products in ee's ranging from 44 to 94%. This asymmetric reaction has been greatly improved by developing a new heteropolymetallic asymmetric catalyst [(R)-LLB, KOH, and H2O]. Using 3-8 mol % of this catalyst, a variety of direct catalytic asymmetric aldol reactions were again found to proceed smoothly, affording aldol products in ee's ranging from 30 to 93% and in good to excellent yields. Interestingly, the use of this new heteropolymetallic asymmetric catalyst has realized a diastereoselective and enantioselective aldol reaction using cyclopentanone for the first time. It is also noteworthy that a variety of aldehydes, including hexanal, can be utilized for the current direct catalytic asymmetric aldol reaction. Chiral aldehydes containing alpha-hydrogen including (S)-hydrocinnamaldehyde-alpha-d have been found to produce the corresponding aldol products with negligible racemization (0-4%) at the a-position One of the aldol products has been successfully converted to the key synthetic intermediates of epothilone A and bryostatin 7. The possible structure of the heteropolymetallic catalyst is also discussed. Finally, mechanistic studies have revealed a characteristic reaction pathway, namely that the reaction is kinetically controlled and the rate-determining step is the deprotonation of the ketone. This is consistent with the fact that the reaction rate is independent of the concentration of the aldehyde.