摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3-Dihydro-4-phenyl-1-(phenylmethyl)-2H-imidazol-2-one | 93782-04-8

中文名称
——
中文别名
——
英文名称
1,3-Dihydro-4-phenyl-1-(phenylmethyl)-2H-imidazol-2-one
英文别名
3-benzyl-5-phenyl-1H-imidazol-2-one
1,3-Dihydro-4-phenyl-1-(phenylmethyl)-2H-imidazol-2-one化学式
CAS
93782-04-8
化学式
C16H14N2O
mdl
——
分子量
250.3
InChiKey
BPLCUGPDQBEZEI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    1.214±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    19
  • 可旋转键数:
    3
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.06
  • 拓扑面积:
    32.3
  • 氢给体数:
    1
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives
    摘要:
    Methods for selectively protecting one of the degenerate nitrogen atoms of the cyclic urea derivatives 1,3-dihydro-2H-benzimidazol-2-one (6a), 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (11), 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones (20), 1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (22), and 1,3-dihydro-4-phenyl-2H-imidazol-2-one (27) were developed. Heating these cyclic ureas with ethyl 2-pyridyl carbonate in the presence of a base in CH3CN at reflux or DMF at 100 degrees C cleanly provided the monoethoxycarbonyl derivatives 7a, 12, 21, 23, and 28, respectively. Alternatively, treatment of 6a with an excess of diethyl pyrocarbonate or di-tert-butyl dicarbonate afforded the bis-alkoxycarbonyl derivatives 8a and 8b, respectively, which underwent disproportionation to 7a and 7b upon heating with 1 mol equiv of 6a and K2CO3 in CH3CN at reflux. The regiochemistry of the introduction of alkoxycarbonyl groups to benzimidazol-2-one derivatives was not significantly influenced by an electron-withdrawing (CF3, 6b) or an electron-donating (OCH3, 6c) substituent at C-5 of the heterocyclic ring. However, the reaction was found to be sensitive to steric factors since a chlorine substituent ortho to one of the urea N atoms (6e) completely directed the alkoxycarbonyl moiety to the less sterically encumbered N atom, affording a single product (7f, 7g). Alkylation of 7a-g proceeded efficiently to provide products 10a-10ag after removal of the protecting group. Halogenation of monoprotected benzimidazol-2-one 7a occurred regiospecifically to give the monohalo derivatives 7h, 7i, and 7k, the identity of which were readily established from the characteristic chemical shift and spin coupling pattern in their 1H NMR spectra. A protecting group interchange strategy that took advantage of the distinctive chemical reactivities of the EtO(2)C and t-BuO(2)C protecting groups toward isopropylamine was developed that provided access to the isomerically substituted series of monohalo, mono-N-alkylated benzimidazol-2-ones 71 and 7m. The efficient derivatization of the unprotected N atom of these monoprotected cyclic urea derivatives was accomplished by treating with activated and unactivated halides in the. presence of K2CO3 or exposure to alcohols under Mitsunobu conditions. In several cases, mixtures of O- and N-alkylated products were produced which were readily separated by chromatography. Alkylation of 7h with activated halides, using K2CO3 in CH3CN at reflux, occurred without protecting group equilibration; however, a mixture of isomeric alkylated products was obtained when 7h was heated at 110 degrees C in DMF with cyclohexylmethyl bromide in the presence of K2CO3 as the base. Derivatization of 7h under Mitsunobu reaction conditions proceeded with retention of the topological substituent relationships. Subsequent removal of the alkoxycarbonyl moiety afforded monoalkylated cyclic urea derivatives.
    DOI:
    10.1021/jo00111a014
点击查看最新优质反应信息

文献信息

  • One-Pot Conversion of α-Thioureido Esters to Imidazol-2-ones and Imidazole-2-thiones
    作者:Jay Markwalder、Richard Pottorf、Steven Seitz
    DOI:10.1055/s-1997-6138
    日期:1997.6
    4-Hydroxyimidazolidin-2-ones and 4-hydroxyimidazolidine-2-thiones are obtained by treatment of N-(aminocarbonyl)-α-amino esters and N-(aminothiocarbonyl)-α-amino esters with diisobutylaluminum hydride (DIBAH). These substances are transformed to imidazol-2-ones and imidazole-2-thiones upon acidic workup.
    通过用氢化二异丁基铝(DIBAH)处理 N-(氨基羰基)-δ±-氨基酯和 N-(氨基硫代羰基)-δ±-氨基酯,可获得 4-羟基咪唑烷-2-酮和 4-羟基咪唑烷-2-硫酮。这些物质在酸性作用下会转化为咪唑-2-酮和咪唑-2-硫酮。
  • Effect of Structural Modification of the Hydantoin Ring on Anticonvulsant Activity
    作者:Sergio Cortes、Zeng-Kun Liao、Darrell Watson、Harold Kohn
    DOI:10.1021/jm50001a012
    日期:1985.5
    Selectively substituted hydantoins 1 (15 examples), 4-hydroxy-2-imidazolidinones 2 (13 examples), 2-imidazolones 3 (10 examples), 2-imidazolidinones 4 (four examples), vicinal diamines 5 (two examples), and simple amino acid derivatives 6 (four examples) have been prepared and evaluated in the maximal electroshock seizure (MES), subcutaneous pentylenetetrazole seizure threshold (sc Met), and rotorod
    选择性取代的乙内酰脲1(15例),4-羟基-2-咪唑啉酮2(13例),2-咪唑啉酮3(10例),2-咪唑啉酮4(4例),邻位二胺5(2例)和简单已经制备了氨基酸衍生物6(四个实例),并在最大电击惊厥(MES),皮下戊四氮癫痫发作阈值(sc Met)和旋翼机(Tox)测试中进行了评估。报道了活性最高的化合物的中等有效剂量(ED50)和中等毒性剂量(TD50)。通常,对于乙内酰脲1和受保护的氨基酸6观察到最显着的活性。在每个系列的化合物中,通常注意到对于具有从氮原子上除去一个碳原子的芳族基团的化合物而言,其抗惊厥活性增强。在观察到的最具活性的化合物中,有氨基酸衍生物N-乙酰基-D,L-丙氨酸苄酰胺(6d)和两个2-咪唑啉酮4-甲基-1-(苯基甲基)-1,3-二氢-2H-咪唑- 2-酮(3e)和1-苯基-1,3-二氢-2H-咪唑-2-酮(3g)。在MES试验中,化合物6d的效价比苯乙酰胺稍强。
  • Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives
    作者:Nicholas A. Meanwell、Sing Yuen Sit、Jinnian Gao、Henry S. Wong、Qi Gao、Denis R. St. Laurent、Neelakantan Balasubramanian
    DOI:10.1021/jo00111a014
    日期:1995.3
    Methods for selectively protecting one of the degenerate nitrogen atoms of the cyclic urea derivatives 1,3-dihydro-2H-benzimidazol-2-one (6a), 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (11), 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones (20), 1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (22), and 1,3-dihydro-4-phenyl-2H-imidazol-2-one (27) were developed. Heating these cyclic ureas with ethyl 2-pyridyl carbonate in the presence of a base in CH3CN at reflux or DMF at 100 degrees C cleanly provided the monoethoxycarbonyl derivatives 7a, 12, 21, 23, and 28, respectively. Alternatively, treatment of 6a with an excess of diethyl pyrocarbonate or di-tert-butyl dicarbonate afforded the bis-alkoxycarbonyl derivatives 8a and 8b, respectively, which underwent disproportionation to 7a and 7b upon heating with 1 mol equiv of 6a and K2CO3 in CH3CN at reflux. The regiochemistry of the introduction of alkoxycarbonyl groups to benzimidazol-2-one derivatives was not significantly influenced by an electron-withdrawing (CF3, 6b) or an electron-donating (OCH3, 6c) substituent at C-5 of the heterocyclic ring. However, the reaction was found to be sensitive to steric factors since a chlorine substituent ortho to one of the urea N atoms (6e) completely directed the alkoxycarbonyl moiety to the less sterically encumbered N atom, affording a single product (7f, 7g). Alkylation of 7a-g proceeded efficiently to provide products 10a-10ag after removal of the protecting group. Halogenation of monoprotected benzimidazol-2-one 7a occurred regiospecifically to give the monohalo derivatives 7h, 7i, and 7k, the identity of which were readily established from the characteristic chemical shift and spin coupling pattern in their 1H NMR spectra. A protecting group interchange strategy that took advantage of the distinctive chemical reactivities of the EtO(2)C and t-BuO(2)C protecting groups toward isopropylamine was developed that provided access to the isomerically substituted series of monohalo, mono-N-alkylated benzimidazol-2-ones 71 and 7m. The efficient derivatization of the unprotected N atom of these monoprotected cyclic urea derivatives was accomplished by treating with activated and unactivated halides in the. presence of K2CO3 or exposure to alcohols under Mitsunobu conditions. In several cases, mixtures of O- and N-alkylated products were produced which were readily separated by chromatography. Alkylation of 7h with activated halides, using K2CO3 in CH3CN at reflux, occurred without protecting group equilibration; however, a mixture of isomeric alkylated products was obtained when 7h was heated at 110 degrees C in DMF with cyclohexylmethyl bromide in the presence of K2CO3 as the base. Derivatization of 7h under Mitsunobu reaction conditions proceeded with retention of the topological substituent relationships. Subsequent removal of the alkoxycarbonyl moiety afforded monoalkylated cyclic urea derivatives.
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺