Preparation of axially chiral quinolinium salts related to NAD+ models: new investigations of these biomimetic models as ‘chiral amide-transferring agents’
作者:Stéphane Leleu、Cyril Papamicaël、Francis Marsais、Georges Dupas、Vincent Levacher
DOI:10.1016/j.tetasy.2004.11.004
日期:2004.12
The general purpose of this work is to investigate the potential of biomimetic NAD(+) models as 'nucleophile-transferring agents' with the ultimate motivation to develop new synthetic tools. This first report focuses on the preparation of an axially chiral quinolinium salt 8. A preliminary investigation of these NAD(+) analogues as 'chiral amide-transferring agents' is reported herein. The synthesis of the desired quinolinium salt 8 was first attempted via a Friedlander approach. Given the poor reproducibility of this first synthetic route, a second strategy making use of an intramolecular nickel-catalyzed coupling was developed with success, furnishing the quinolinium salt 8 in 12% overall yield. The potential of the quinolinium salt 8 as a 'chiral amide-transferring agent' was then investigated. Regioselective 1,4-addition of benzylamine and piperidine produced, respectively, adducts 18a and 18b with high diastereoselectivity (de >95%). The resulting 'chiral masked-amide' 18b was reacted with various activated aryl esters affording the corresponding atropisomeric amide 20 with modest atropenantioselectivity (ee = 2-20%). (C) 2004 Elsevier Ltd. All rights reserved.