Synthesis and antioxidant activity of hydroxylated phenanthrenes as cis-restricted resveratrol analogues
摘要:
Five hydroxylated phenanthrenes as "cis-configuration-fixed" resveratrol analogues differing in the number and position of the hydroxyl groups were designed and synthesized. Their antioxidant activity was studied by ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging, and DNA strand breakage-inhibiting assays, corresponding to their electron-donating, hydrogen-transfer and DNA-protecting abilities, respectively. In the above assays, their activity depends significantly on the number and position of the hydroxyl groups, and most of them are more effective than resveratrol. Noticeably, compound 9b (2,4,6-trihydroxyl phenanthrene) with the same hydroxyl group substitutions as resveratrol, is superior to the reference compound, highlighting the importance of extension of the conjugation over multiple aromatic-rings. Similar activity sequences were obtained in different experimental models, but the appreciable differences could contribute detailed insights into antioxidant mechanisms. Based on these results, the hydroxylated phenanthrenes may be considered as a novel type of resveratrol-directed antioxidants. (C) 2012 Elsevier Ltd. All rights reserved.
This process is a process for production of a vinyl chloride polymer by suspension polymerization or emulsion polymerization of vinyl chloride monomer or a mixture of vinyl chloride monomer with a vinyl monomer copolymerizable with said vinyl chloride monomer in an aqueous medium, characterized in that the polymerization is carried out in a polymerizer, the inner wall surface and portions of the auxiliary equipment thereof which may come into contact with the monomer during polymerization being previously coated with a scaling preventive comprising at least one selected from dyes, pigments and aromatic or heterocyclic compounds having at least 5 conjugated π bonds, while controlling the chloride ion concentration in the reaction mixture to not higher than 100 ppm. According to said process, scaling onto the inner wall surface of a polymerizer, etc. during polymerization can be prevented effectively and surely.