In vitro studies using human liver microsomes and recombinant P450 enzymes have shown that quinine is metabolized mainly by CYP3A4. Depending on the in vitro experimental conditions, other enzymes, including CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1 were shown to have some role in the metabolism of quinine.
Quinine is metabolized almost exclusively via hepatic oxidative cytochrome P450 (CYP) pathways, resulting in four primary metabolites, 3-hydroxyquinine, 2'-quinone, O-desmethylquinine, and 10,11-dihydroxydihydroquinine. Six secondary metabolites result from further biotransformation of the primary metabolites. The major metabolite, 3-hydroxyquinine, is less active than the parent drug.
IDENTIFICATION AND USE: Quinine is a bulky, white, amorphous powder or crystalline alkaloid, used as medication: non-narcotic analgesics; antimalarial; central muscle relaxants. It is also used as flavor in carbonated beverages. HUMAN EXPOSURE AND TOXICITY: Serious hypersensitivity reactions, including anaphylactic shock, anaphylactoid reactions, urticaria, serious skin rashes, angioedema, facial edema, bronchospasm, and pruritus, have been reported with quinine. In addition, thrombocytopenia, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura (HUS/TTP), immune thrombocytopenic purpura, blackwater fever, disseminated intravascular coagulation, leukopenia, neutropenia, granulomatous hepatitis, and acute interstitial nephritis have been reported and may also be due to hypersensitivity reactions to the drug. Potentially fatal cardiac arrhythmias, including torsades de pointes and ventricular fibrillation, have been reported rarely during quinine therapy. At least 1 case of fatal ventricular arrhythmia has been reported in a geriatric patient with preexisting prolonged QT interval treated with IV quinine sulfate for Plasmodium falciparum malaria. Visual impairment can range from blurred vision and defective color perception, to visual field constriction and permanent blindness. Cinchonism occurs in virtually all patients with quinine overdose. There have been a large number of case reports of malformations following quinine ingestion in human pregnancy. Many of these pregnancies involved large doses of quinine used as an abortifacient. The most frequently reported abnormality following quinine exposure during early pregnancy is hypoplasia of the auditory nerve with resultant deafness. Other major malformations involving most organ systems have been reported also. However, the Perinatal Collaborative Study reported no association between first trimester exposure to quinine and birth defects. In general, there has been no proven association between quinine at doses used for malarial prophylaxis and an increased risk of malformations. Third trimester exposure to quinine does not appear to adversely affect uterine contractility. However, an increase in insulin secretion associated with hypoglycemia has been reported. Therefore, monitoring of blood or serum glucose levels during quinine therapy is advisable. Although the United States Food and Drug Administration banned its use for nocturnal leg cramps due to lack of safety and efficacy, quinine is widely available in beverages including tonic water and bitter lemon. Numerous anecdotal reports suggest that products containing quinine may produce neurological complications, including confusion, altered mental status, seizures, and coma, particularly in older women. ANIMAL STUDIES: Rabbits given 20 to 100 mg quinine hydrochloride/kg intravenously or intramuscularly 3 times a week for 10 weeks have been reported to show no ophthalmoscopic or histologic abnormalities in the fundus or optic nerve, and /another study/ similarly found no abnormality in most rabbits injected intraperitoneally with 10 mg/kg/day for 21 to 27 days showed degeneration of rods and cones and vacuoles in the retinal ganglion cells. In animal developmental studies conducted in multiple animal species, pregnant animals received quinine by the subcutaneous or intramuscular route at dose levels similar to the maximum recommended human dose based on body surface area (BSA) comparisons. There were increases in fetal death in utero in rabbits at maternal doses = 100 mg/kg/day and in dogs at = 15 mg/kg/day cochlea at maternal doses of 200 mg/kg corresponding to a dose level of approximately 1.4 times the MRHD based on BSA comparison. There were no teratogenic findings in rats at maternal doses up to 300 mg/kg/day and in monkeys at doses up to 200 mg/kg/day corresponding to doses approximately 1 and 2 times the MRHD respectively based on BSA comparisons. Quinine produces testicular toxicity in mice at a single intraperitoneal dose of 300 mg/kg, and in rats at an intramuscular dose of 10 mg/kg/day, 5 days/week, for 8 weeks. The findings include atrophy or degeneration of the seminiferous tubules, decreased sperm count and motility, and decreased testosterone levels in the serum and testes. Genotoxicity studies of quinine were positive in the Ames bacterial mutation assay with metabolic activation and in the sister chromatid exchange assay in mice. The sex-linked recessive lethal test performed in Drosophila, the in vivo mouse micronucleus assay, and the chromosomal aberration assay in mice and Chinese hamsters were negative.
◉ Summary of Use during Lactation:Because of the low levels of quinine in breastmilk, amounts ingested by the infant are small and would not be expected to cause any adverse effects in breastfed infants. The dosage in milk is far below those required to treat an infant for malaria. However, quinine should not be used in mothers with an infant who is glucose-6-phosphate dehydrogenase (G6PD) deficient. Even the relatively small amounts of quinine in tonic water ingested by the mother have caused hemolysis in G6PD-deficient infants.
◉ Effects in Breastfed Infants:Four breastfed infants of 3 mothers, 3 boys and 1 girl (one set of twins) developed severe hemolysis following maternal ingestion of beverages containing quinine (e.g., tonic water). All infants had low levels of G6PD and were jaundiced on admission. Cessation of breastfeeding and tonic water and phototherapy and/or transfusion resolved the jaundice. One of the infants who was severely jaundiced had abnormal brainstem automatized evoked potentials at discharge. At 4 months of age he had a slight decrease in reactivity and a profound bilateral deafness. The breastmilk of one of the mothers was qualitatively positive for quinine. The hemolysis was probably caused by quinine in breastmilk.
◉ Effects on Lactation and Breastmilk:Relevant published information was not found as of the revision date.
Cinchona alkaloids, including quinine, may depress the hepatic synthesis of vitamin K-dependent coagulation factors, and the resulting hypoprothrombinemic effect may enhance the action of warfarin and other oral anticoagulants. In patients receiving these anticoagulants and concomitant therapy with quinine, the prothrombin time (PT), partial thromboplastin time (PTT), or international normalized ratio (INR) should be closely monitored as indicated.
The pharmacokinetics of quinine was investigated in patients with acute Falciparum malaria treated with quinine alone or in the presence of doxycycline. Twenty six patients divided into two groups of equal number were enrolled in the study. In the absence of doxycycline, the volume of distribution of quinine (mean + or - standard deviation) was estimated to be 1.32 + or - 0.32 l/kg, and its clearance was 0.125 + or - 0.47 l/hr/kg, which was only in partial agreement with previously published data. No effect of doxycycline on the pharmacokinetics of quinine was observed.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
相互作用
奎宁是P-糖蛋白的底物,也是其抑制剂,有可能影响那些是P-糖蛋白底物的药物的转运。
Quinine is a substrate for and an inhibitor of P-glycoprotein, and has the potential to affect the transport of drugs that are P-glycoprotein substrates.
Following oral administration of a single 600-mg dose of quinine sulfate in healthy adults, the mean plasma clearance was 0.08-0.47 L/hour per kg (median: 0.17 L/hour per kg) and the mean plasma elimination half-life was 9.7-12.5 hours. Following oral administration of 10 mg/kg of quinine sulfate in patients with uncomplicated malaria, mean total clearance of quinine was decreased (approximately 0.09 L/hour per kg) during the acute phase of the infection and increased (approximately 0.16 L/hour per kg) during the recovery or convalescent phase.
Following oral administration of a single 600-mg dose of quinine sulfate in geriatric and younger adults, the mean clearance of the drug was decreased (0.06 versus 0.08 L/hour per kg) and the mean elimination half-life was significantly increased (18.4 versus 10.5 hours) in geriatric adults compared with younger adults. Although renal clearance of quinine was similar in geriatric and younger adults, geriatric adults excreted a larger proportion of the dose in urine as unchanged drug compared with younger adults (16.6 versus 11.2%). The steady-state pharmacokinetics after a quinine sulfate dosage of 648 mg 3 times daily for 7 days were similar in healthy geriatric adults 65-78 years of age and healthy younger adults 20-39 years of age; however, the mean elimination half-life was 24 hours in the geriatric individuals compared with 20 hours in the younger adults.
Following oral administration of a single dose of 10 mg/kg of quinine sulfate in healthy children or pediatric patients 1.5-12 years of age with uncomplicated Plasmodium falciparum malaria, the mean total clearance (0.06 versus 0.3 L/hour per kg) is reduced and the plasma elimination half-life increased (12.1 versus 3.21 hours) in pediatric patients with malaria as compared to that observed in healthy children.
In 15 patients with uncomplicated malaria who received a 10 mg/kg oral dose of quinine sulfate, the mean total clearance of quinine was slower (approximately 0.09 L/hr/kg) during the acute phase of the infection, and faster (approximately 0.16 L/hr/kg) during the recovery or convalescent phase.
Substituted 1,3-thiazole compounds, their production and use
申请人:——
公开号:US20040053973A1
公开(公告)日:2004-03-18
(1) A 1,3-thiazole compound of which the 5-position is substituted with a 4-pyridyl group having a substituent including no aromatic group or (2) a 1,3-thiazole compound of which the 5-position is substituted with a pyridyl group having at the position adjacent to a nitrogen atom of the pyridyl group a substituent including no aromatic group has an excellent p38 MAP kinase inhibitory activity.
A quencher is disclosed having a compound represented by the following general formula (1):
wherein R
5
each independently represent a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, an amino group having a substituent or not having a substituent, a hydroxy group, an aryl group, an aryloxy group, or an arylalkyl group; R
6
represents a group having a polymerizable unsaturated group, a hydroxy group, or the like; Y
1
represents an oxygen atom, or the like; An
−
represents an anion; Ar
1
represents a specific ring structure; * and ** represent binding positions; Ar
2
represents a benzene ring, a naphthalene ring, or an anthracene ring; n
1
represents a specific integer;
and the following structure (1-10) in the general formula (1) is an asymmetric structure;
(wherein R
5
, Y
1
, Ar
1
, Ar
2
, n
1
, * and ** are the same as described above.).
BENZAZEPINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND USE
申请人:Takeda Chemical Industries, Ltd.
公开号:EP1422228A1
公开(公告)日:2004-05-26
The present invention provides a novel benzazepine derivative represented by formula :
wherein, R1 is a 5- or 6-membered aromatic ring, R2 is lower alkyl group, etc., Y is an optionally substituted imino group, ring A and ring B are independently an optionally substituted aromatic ring, W is formula -W1-X2-W2- (W1 and W2 are independently S(O)m1 (m1 is 0, 1 or 2), etc., and X2 is an optionally substituted alkylene groupetc. ), a preparation method and use thereof.
[EN] HETEROCYCLIC COMPOUNDS AND THEIR USE AS RETINOID-RELATED ORPHAN RECEPTOR (ROR) GAMMA-T INHIBITORS<br/>[FR] COMPOSÉS HÉTÉROCYCLIQUES ET LEUR UTILISATION EN TANT QU'INHIBITEURS GAMMA-T DU RÉCEPTEUR ORPHELIN APPARENTÉ AUX RÉCEPTEURS DES RÉTINOÏDES (ROR) )
申请人:TAKEDA PHARMACEUTICAL
公开号:WO2016002968A1
公开(公告)日:2016-01-07
Provided are heterocyclic compounds having a RORγt inhibitory action represented by the formula (I): wherein each symbol is as defined in the specification, or a salt thereof.
Mixed steroidal 1, 2, 4, 5- tetraoxane compounds and methods of making and using thereof
申请人:——
公开号:US20040019200A1
公开(公告)日:2004-01-29
Disclosed herein are mixed steroidal tetraoxanes having the following structural formula 1
1
wherein n is 0, 1, 2, or 3; R is H; ethanoyl, propanoyl, or benzoyl; R1 is H, methyl, ethyl, or isopropyl; R2 is H, methyl, or ethyl; R3 is H, methyl, or ethyl; R4 is H, methyl, ethyl, tert-butyl, phenyl, p-hydroxyphenyl, p-methoxyphenyl, or p-nitrophenyl, or
2
wherein Y is a C
1
-C
4
straight or branched-chain alkoxy, or
3
wherein W is N, R5 is hydrogen, methyl, ethyl, n-propyl, isopropyl, or methyl ethanoate 2-yl, and R6 is hydrogen, methyl, ethyl, or n-propyl, or R5 and R6 are part of a pyrrolidine or piperidine ring; X is a C
1
-C
4
straight or branched-chain alkoxy, a primary amino, a N-alkylamino wherein the alkyl is a straight-chain alkyl groups containing from 1 to 4 carbon atoms, methyl ethanoate-2-yl, N-phenylamino, p-nitrophenyl, N,N-dimethylamino, N,N-diethylamino, N,N-di(n-propyl)amino, N-pyrrolidino, or N-piperidino as single compounds, and any mixture of all possible stereoisomers at C(4″). n may be 0, 1, 2, or 3, and methods of making and using thereof. As disclosed herein, the mixed steroidal tetraoxanes of the present invention exhibit antimalarial, antibacterial, and antiproliferative activity. Thus, as disclosed herein, the mixed steroidal tetraoxanes of the present invention may be used to treat, prevent, or inhibit malaria, bacterial infections, and diseases and disorders associated with cell proliferation in a subject.