Synthesis and Structure−Activity Relationship of N-Substituted 4-Arylsulfonylpiperidine-4-hydroxamic Acids as Novel, Orally Active Matrix Metalloproteinase Inhibitors for the Treatment of Osteoarthritis
摘要:
The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue degradation. In our preceding paper, we have reported on a series of novel and orally active N-hydroxy-alpha-phenylsulfonylacetamide derivatives. However, these compounds had two drawbacks (moderate selectivity and chirality issues). To circumvent these two problems, a series of novel and orally active N-substituted 4-benzenesulfonylpiperidine-4-carboxylic acid hydroxyamide derivatives have been synthesized. The present paper deals with the synthesis and SAR of these compounds. Among the several compounds synthesized, derivative 55 turned out to be a potent, selective, and an orally active MMP inhibitor in the clinically relevant advanced rabbit osteoarthritis model. Detailed pharmacokinetics and metabolism data are described.
Synthesis and Structure−Activity Relationship of N-Substituted 4-Arylsulfonylpiperidine-4-hydroxamic Acids as Novel, Orally Active Matrix Metalloproteinase Inhibitors for the Treatment of Osteoarthritis
摘要:
The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue degradation. In our preceding paper, we have reported on a series of novel and orally active N-hydroxy-alpha-phenylsulfonylacetamide derivatives. However, these compounds had two drawbacks (moderate selectivity and chirality issues). To circumvent these two problems, a series of novel and orally active N-substituted 4-benzenesulfonylpiperidine-4-carboxylic acid hydroxyamide derivatives have been synthesized. The present paper deals with the synthesis and SAR of these compounds. Among the several compounds synthesized, derivative 55 turned out to be a potent, selective, and an orally active MMP inhibitor in the clinically relevant advanced rabbit osteoarthritis model. Detailed pharmacokinetics and metabolism data are described.
Identification of spirooxindole and dibenzoxazepine motifs as potent mineralocorticoid receptor antagonists
作者:Stephen D. Lotesta、Andrew P. Marcus、Yajun Zheng、Katerina Leftheris、Paul B. Noto、Shi Meng、Geeta Kandpal、Guozhou Chen、Jing Zhou、Brian McKeever、Yuri Bukhtiyarov、Yi Zhao、Deepak S. Lala、Suresh B. Singh、Gerard M. McGeehan
DOI:10.1016/j.bmc.2016.02.014
日期:2016.3
Mineralocorticoid receptor (MR) antagonists continue to be a prevalent area of research in the pharmaceutical industry. Herein we report the discovery of various spirooxindole and dibenzoxazepine constructs as potent MR antagonists. SAR analysis of our spirooxindole hit led to highlypotent compounds containing polar solubilizing groups, which interact with the helix-11 region of the MR ligand binding
Synthesis and Structure−Activity Relationship of N-Substituted 4-Arylsulfonylpiperidine-4-hydroxamic Acids as Novel, Orally Active Matrix Metalloproteinase Inhibitors for the Treatment of Osteoarthritis
作者:Venkatesan Aranapakam、Jamie M. Davis、George T. Grosu、Baker、John Ellingboe、Arie Zask、Jeremy I. Levin、Vincent P. Sandanayaka、Mila Du、Jerauld S. Skotnicki、John F. DiJoseph、Amy Sung、Michele A. Sharr、Loran M. Killar、Thomas Walter、Guixian Jin、Rebecca Cowling、Jeff Tillett、Weiguang Zhao、Joseph McDevitt、Zhang Bao Xu
DOI:10.1021/jm0205550
日期:2003.6.1
The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue degradation. In our preceding paper, we have reported on a series of novel and orally active N-hydroxy-alpha-phenylsulfonylacetamide derivatives. However, these compounds had two drawbacks (moderate selectivity and chirality issues). To circumvent these two problems, a series of novel and orally active N-substituted 4-benzenesulfonylpiperidine-4-carboxylic acid hydroxyamide derivatives have been synthesized. The present paper deals with the synthesis and SAR of these compounds. Among the several compounds synthesized, derivative 55 turned out to be a potent, selective, and an orally active MMP inhibitor in the clinically relevant advanced rabbit osteoarthritis model. Detailed pharmacokinetics and metabolism data are described.