中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | 1-[(2E)-3-phenylprop-2-enoyl]piperidin-4-one | —— | C14H15NO2 | 229.279 |
Doxorubicin (DOX) is a widely used anticancer drug. However, its clinical use is severely limited due to drug-induced cumulative cardiotoxicity, which leads to progressive cardiomyocyte dysfunction and heart failure. Enormous efforts have been made to identify potential strategies to alleviate DOX-induced cardiotoxicity; however, to date, no universal and highly effective therapy has been introduced. Here we reported that cinnamic acid (CA) derivatives exert a multitarget protective effect against DOX-induced cardiotoxicity. The experiments were performed on rat cardiomyocytes (H9c2) and human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) as a well-established model for cardiac toxicity assessment. CA derivatives protected cardiomyocytes by ameliorating DOX-induced oxidative stress and viability reduction. Our data indicated that they attenuated the chemotherapeutic’s toxicity by downregulating levels of caspase-3 and -7. Pre-incubation of cardiomyocytes with CA derivatives prevented DOX-induced motility inhibition in a wound-healing assay and limited cytoskeleton rearrangement. Detailed safety analyses—including hepatotoxicity, mutagenic potential, and interaction with the hERG channel—were performed for the most promising compounds. We concluded that CA derivatives show a multidirectional protective effect against DOX-induced cardiotoxicity. The results should encourage further research to elucidate the exact molecular mechanism of the compounds’ activity. The lead structure of the analyzed CA derivatives may serve as a starting point for the development of novel therapeutics to support patients undergoing DOX therapy.
We developed a new type of molecular rods consisting of two (or more) rigid units linked by a flexible joint. Consequently we called these constructs articulated rods (ARs). The syntheses of ARs were carried out by a flexible and modular approach providing access to a number of compounds with various functionalizations in terminal positions. First applications were presented with pyrene, cinnamoyl and anthracenyl labelled ARs.