摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tetraethyl 5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.23,6.213,16.218,21]octatriaconta-1(30),3,5,13,15,18,20,28,31,33,35,37-dodecaene-2,2,17,17-tetrapropionate | 247941-94-2

中文名称
——
中文别名
——
英文名称
tetraethyl 5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.23,6.213,16.218,21]octatriaconta-1(30),3,5,13,15,18,20,28,31,33,35,37-dodecaene-2,2,17,17-tetrapropionate
英文别名
Ethyl 3-[2,17,17-tris(3-ethoxy-3-oxopropyl)-5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.23,6.213,16.218,21]octatriaconta-1(30),3(38),4,6(37),13(36),14,16(35),18,20,28,31,33-dodecaen-2-yl]propanoate
tetraethyl 5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.2<sup>3,6</sup>.2<sup>13,16</sup>.2<sup>18,21</sup>]octatriaconta-1(30),3,5,13,15,18,20,28,31,33,35,37-dodecaene-2,2,17,17-tetrapropionate化学式
CAS
247941-94-2
化学式
C62H84O12
mdl
——
分子量
1021.34
InChiKey
GLBQAKRMCNLLGZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    13.3
  • 重原子数:
    74
  • 可旋转键数:
    20
  • 环数:
    11.0
  • sp3杂化的碳原子比例:
    0.55
  • 拓扑面积:
    142
  • 氢给体数:
    0
  • 氢受体数:
    12

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    tetraethyl 5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.23,6.213,16.218,21]octatriaconta-1(30),3,5,13,15,18,20,28,31,33,35,37-dodecaene-2,2,17,17-tetrapropionatesodium hydroxide 作用下, 以 四氢呋喃甲醇 为溶剂, 反应 6.0h, 以100%的产率得到5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.23,6.213,16.218,21]octatriaconta-1(30),3,5,13,15,18,20,28,31,33,35,37-dodecaene-2,2,17,17-tetrapropionic acid
    参考文献:
    名称:
    Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-cyclophanes
    摘要:
    Catalytic dendrophanes 9 and 10 were prepared as functional mimics of the thiamine-diphosphate-dependent enzyme pyruvate oxidase, and studied as catalysts in the oxidation of naphthalene-2-carbaldehyde (4) to methyl naphthalene-2-carboxylate (8) (Scheme 1). They are composed of a thiazolio-cyclophane initiator core with four generation-2 (G-2) poly(etheramide) dendrons attached. The two dendrophanes were synthesized by a convergent growth strategy by coupling dendrons 11 and 12, respectively (Scheme 2), with (chloromethyl)-cyclophane 42 (Scheme 5) and subsequent conversion with 4-methylthiaaole (Scheme 7). The X-ray crystal structures of cyclophane precursors 30 (Scheme 3), 37 and 38 (Scheme 5) on the way to dendrophanes were determined (Fig. I). The crystal-structure analysis of the benzene clathrate of 37 revealed the formation of channel-like stacks by the cyclophane which incorporate its morpholinomethyl side chain and the enclathrated benzene molecule (Fig. 2). The interactions of the enclathrated benzene molecule with the phenyl rings of the two adjacent cyclophane molecules in the stack closely resemble those between neighboring benzene molecules in crystalline benzene (Fig. 3). The characterization by MALDI-TOF-MS (Fig. 4) and H-1- and C-13-NMR spectroscopy (Fig. 5) proved the monodispersity of the G-2 dendrophanes 9 and 10 with molecular weights up to 11500 Da (Eor 10). H-1-NMR and fluorescence binding titrations in H2O and aqueous MeOH showed that 9 and 10 form stable 1:1 complexes with naphthalene-2-carbaldehyde (4) and 6-(p-toluidino)naphthalene-2-sulfonate (48, TNS) (Tables 1 and 2). The evaluation of the fluorescence-emission maxima of bound TNS revealed that the dendritic branching creates a microenvironment of distinctly reduced polarity at the cyclophane core by limiting its exposure to bulk solvent. Initial rate studies for the oxidation of naphthalene-2-carbaldehyde to methyl naphthalene-2-carboxylate in basic aqueous MeOH in the presence of flavin derivative 6 revealed only a weak catalytic activity of dendrophanes 9 and 10 (Table 3), despite the favorable micropolarity at the cyclophane active site. The low catalytic activity in the interior of the macromolecules was explained by steric hindrance of reaction transition states by the dendritic branches.
    DOI:
    10.1002/(sici)1522-2675(19990707)82:7<1066::aid-hlca1066>3.0.co;2-o
  • 作为产物:
    描述:
    3,3-bis{4-[(tert-butyl)dimethylsilyloxy]-3,5-dimethylphenyl}pentane-1,5-diyl bis(methanesulfonate) 在 硫酸potassium carbonatecaesium carbonate 、 potassium iodide 作用下, 以 二甲基亚砜N,N-二甲基甲酰胺 为溶剂, 反应 104.0h, 生成 tetraethyl 5,14,20,29,32,33,36,37-octamethyl-7,12,22,27-tetraoxapentacyclo[26.2.2.23,6.213,16.218,21]octatriaconta-1(30),3,5,13,15,18,20,28,31,33,35,37-dodecaene-2,2,17,17-tetrapropionate
    参考文献:
    名称:
    Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-cyclophanes
    摘要:
    Catalytic dendrophanes 9 and 10 were prepared as functional mimics of the thiamine-diphosphate-dependent enzyme pyruvate oxidase, and studied as catalysts in the oxidation of naphthalene-2-carbaldehyde (4) to methyl naphthalene-2-carboxylate (8) (Scheme 1). They are composed of a thiazolio-cyclophane initiator core with four generation-2 (G-2) poly(etheramide) dendrons attached. The two dendrophanes were synthesized by a convergent growth strategy by coupling dendrons 11 and 12, respectively (Scheme 2), with (chloromethyl)-cyclophane 42 (Scheme 5) and subsequent conversion with 4-methylthiaaole (Scheme 7). The X-ray crystal structures of cyclophane precursors 30 (Scheme 3), 37 and 38 (Scheme 5) on the way to dendrophanes were determined (Fig. I). The crystal-structure analysis of the benzene clathrate of 37 revealed the formation of channel-like stacks by the cyclophane which incorporate its morpholinomethyl side chain and the enclathrated benzene molecule (Fig. 2). The interactions of the enclathrated benzene molecule with the phenyl rings of the two adjacent cyclophane molecules in the stack closely resemble those between neighboring benzene molecules in crystalline benzene (Fig. 3). The characterization by MALDI-TOF-MS (Fig. 4) and H-1- and C-13-NMR spectroscopy (Fig. 5) proved the monodispersity of the G-2 dendrophanes 9 and 10 with molecular weights up to 11500 Da (Eor 10). H-1-NMR and fluorescence binding titrations in H2O and aqueous MeOH showed that 9 and 10 form stable 1:1 complexes with naphthalene-2-carbaldehyde (4) and 6-(p-toluidino)naphthalene-2-sulfonate (48, TNS) (Tables 1 and 2). The evaluation of the fluorescence-emission maxima of bound TNS revealed that the dendritic branching creates a microenvironment of distinctly reduced polarity at the cyclophane core by limiting its exposure to bulk solvent. Initial rate studies for the oxidation of naphthalene-2-carbaldehyde to methyl naphthalene-2-carboxylate in basic aqueous MeOH in the presence of flavin derivative 6 revealed only a weak catalytic activity of dendrophanes 9 and 10 (Table 3), despite the favorable micropolarity at the cyclophane active site. The low catalytic activity in the interior of the macromolecules was explained by steric hindrance of reaction transition states by the dendritic branches.
    DOI:
    10.1002/(sici)1522-2675(19990707)82:7<1066::aid-hlca1066>3.0.co;2-o
点击查看最新优质反应信息

文献信息

  • Catalytic Dendrophanes as Enzyme Mimics: Synthesis, Binding Properties, Micropolarity Effect, and Catalytic Activity of Dendritic Thiazolio-cyclophanes
    作者:Tilo Habicher、François Diederich、Volker Gramlich
    DOI:10.1002/(sici)1522-2675(19990707)82:7<1066::aid-hlca1066>3.0.co;2-o
    日期:1999.7.7
    Catalytic dendrophanes 9 and 10 were prepared as functional mimics of the thiamine-diphosphate-dependent enzyme pyruvate oxidase, and studied as catalysts in the oxidation of naphthalene-2-carbaldehyde (4) to methyl naphthalene-2-carboxylate (8) (Scheme 1). They are composed of a thiazolio-cyclophane initiator core with four generation-2 (G-2) poly(etheramide) dendrons attached. The two dendrophanes were synthesized by a convergent growth strategy by coupling dendrons 11 and 12, respectively (Scheme 2), with (chloromethyl)-cyclophane 42 (Scheme 5) and subsequent conversion with 4-methylthiaaole (Scheme 7). The X-ray crystal structures of cyclophane precursors 30 (Scheme 3), 37 and 38 (Scheme 5) on the way to dendrophanes were determined (Fig. I). The crystal-structure analysis of the benzene clathrate of 37 revealed the formation of channel-like stacks by the cyclophane which incorporate its morpholinomethyl side chain and the enclathrated benzene molecule (Fig. 2). The interactions of the enclathrated benzene molecule with the phenyl rings of the two adjacent cyclophane molecules in the stack closely resemble those between neighboring benzene molecules in crystalline benzene (Fig. 3). The characterization by MALDI-TOF-MS (Fig. 4) and H-1- and C-13-NMR spectroscopy (Fig. 5) proved the monodispersity of the G-2 dendrophanes 9 and 10 with molecular weights up to 11500 Da (Eor 10). H-1-NMR and fluorescence binding titrations in H2O and aqueous MeOH showed that 9 and 10 form stable 1:1 complexes with naphthalene-2-carbaldehyde (4) and 6-(p-toluidino)naphthalene-2-sulfonate (48, TNS) (Tables 1 and 2). The evaluation of the fluorescence-emission maxima of bound TNS revealed that the dendritic branching creates a microenvironment of distinctly reduced polarity at the cyclophane core by limiting its exposure to bulk solvent. Initial rate studies for the oxidation of naphthalene-2-carbaldehyde to methyl naphthalene-2-carboxylate in basic aqueous MeOH in the presence of flavin derivative 6 revealed only a weak catalytic activity of dendrophanes 9 and 10 (Table 3), despite the favorable micropolarity at the cyclophane active site. The low catalytic activity in the interior of the macromolecules was explained by steric hindrance of reaction transition states by the dendritic branches.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物