摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5,5'-(((5-(bromomethyl)-1,3-phenylene)bis(oxy))bis(methylene))bis(1,3-bis(prop-2-yn-1-yloxy)benzene) | 852511-56-9

中文名称
——
中文别名
——
英文名称
5,5'-(((5-(bromomethyl)-1,3-phenylene)bis(oxy))bis(methylene))bis(1,3-bis(prop-2-yn-1-yloxy)benzene)
英文别名
(Acet)4-[G-2]-Br;1,3-Bis[[3,5-bis(prop-2-ynoxy)phenyl]methoxy]-5-(bromomethyl)benzene
5,5'-(((5-(bromomethyl)-1,3-phenylene)bis(oxy))bis(methylene))bis(1,3-bis(prop-2-yn-1-yloxy)benzene)化学式
CAS
852511-56-9
化学式
C33H27BrO6
mdl
——
分子量
599.478
InChiKey
FLFFXXLORPMHKH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    719.2±60.0 °C(Predicted)
  • 密度:
    1.327±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    5.8
  • 重原子数:
    40
  • 可旋转键数:
    15
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.21
  • 拓扑面积:
    55.4
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    结构多样的树突状图书馆:使用点击化学的高效功能化方法
    摘要:
    点击化学的高保真度和效率被用于合成链末端官能化的树枝状大分子文库。在该实例中,叠氮化物与末端乙炔的Cu催化的[3 +2π]环加成反应的选择性以及温和的反应条件,在树枝状和超支化支架的衍生化过程中提供了空前的官能团耐受性。所得的树状文库在结构上是多样的,包括各种主链/表面官能团,并且在非常温和的条件下以几乎定量的产率制备。该方法的鲁棒性和简单性,再加上其在聚合物合成和材料化学的许多方面的适用性,
    DOI:
    10.1021/ma047657f
  • 作为产物:
    参考文献:
    名称:
    结构多样的树突状图书馆:使用点击化学的高效功能化方法
    摘要:
    点击化学的高保真度和效率被用于合成链末端官能化的树枝状大分子文库。在该实例中,叠氮化物与末端乙炔的Cu催化的[3 +2π]环加成反应的选择性以及温和的反应条件,在树枝状和超支化支架的衍生化过程中提供了空前的官能团耐受性。所得的树状文库在结构上是多样的,包括各种主链/表面官能团,并且在非常温和的条件下以几乎定量的产率制备。该方法的鲁棒性和简单性,再加上其在聚合物合成和材料化学的许多方面的适用性,
    DOI:
    10.1021/ma047657f
点击查看最新优质反应信息

文献信息

  • Artificial photosynthesis dendrimers integrating light-harvesting, electron delivery and hydrogen production
    作者:Zhiqing Xun、Tianjun Yu、Yi Zeng、Jinping Chen、Xiaohui Zhang、Guoqiang Yang、Yi Li
    DOI:10.1039/c5ta02565f
    日期:——
    A series of artificial photosynthesis complexes, Gn–Ir–Hy (n = 1–4), were constructed by attaching iridium complexes and [Fe–Fe]-hydrogenase mimic to the periphery and core, respectively, of poly(aryl ether) dendrimers of different generations. The iridium complexes act as the light-harvesting antennae and the hydrogenase mimic core is the catalytic center. Light-harvesting, photoinduced electron-transfer
    一系列人工光合作用配合物G n –Ir–Hy(n= 1-4),是通过将配合物和[Fe-Fe]-加氢酶模拟物分别连接到不同世代的聚(芳基醚)树状聚合物的外围和核心而构建的。配合物充当光收集触角,氢化酶模拟核心是催化中心。在树状光合作用模拟中,使用三乙胺作为牺牲电子供体,实现了光收集,光诱导电子转移和氢光化学生产。随着树状催化剂的产生,催化活性得到增强,第四代的周转次数比第一代的周转次数高将近4倍。外围触角不仅收获光子,而且还充当光化学生产的电子储能器,它促进了催化过程,并增强了树状骨架的采光和保护作用。因此,通过这种合理的设计,可以提高具有完整的光收集和催化功能的有效的人造光合作用系统。
  • Highly efficient synthesis and characterization of multiarm and miktoarm star-long-branched polymers via click chemistry
    作者:Li Ma、Yichao Lin、Haiying Tan、Jun Zheng、Feng Liu、Guangchun Zhang、Jie Liu、Tao Tang
    DOI:10.1039/c5ra02168e
    日期:——
    occurred in the synthesis of 12-arm star PB. The 4-miktoarm star copolymer of butadiene and styrene was also synthesized with high yield (95.1%), high arm Mn and narrow PDI (1.04) by one pot synthesis using click reaction between two different linear polymers (PS-N3 and PB-N3) and a 4-arm core. All the star polymers were characterized by GPC-MALLS-Viscosity-DRI. These multiarm star polymers exhibit morphologies
    通过叠氮化物之间的点击化学反应,合成了两个系列的丁二烯苯乙烯的3–12多臂星形聚合物(S-PB和S-PS),具有高的M n(≥20 kg mol -1)和狭窄的PDI(≤1.04)。末端的聚合物和多炔基有机分子。与先前的报告相比,偶联反应的收率更高(≥85%),并且单臂聚合物的臂数和分子量增加(是之前的4到5倍)。特别是,效率最高的96.1%发生在12臂星形PB的合成中。还以高收率(95.1%),高臂M n合成了丁二烯苯乙烯的4-miktoarm星型共聚物。通过使用两种不同的线性聚合物(PS-N 3和PB-N 3)和4臂核之间的点击反应,通过一锅合成法将PDI(1.04)缩小。所有星形聚合物均通过GPC-MALLS-粘度-DRI表征。这些多臂星形聚合物表现出从无规卷曲到硬球的形态,具体取决于星形聚合物的臂数。星形PB和PS中,固有粘度随臂数的增加而出现最大值,其中PB-4arm和PS-6arm的值分别最高。
  • Bi- to tetravalent glycoclusters: synthesis, structure–activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity
    作者:Guan-Nan Wang、Sabine André、Hans-Joachim Gabius、Paul V. Murphy
    DOI:10.1039/c2ob25870f
    日期:——
    The emerging functional versatility of cellular glycans makes research on the design of synthetic inhibitors a timely topic. In detail, the combination of ligand (or headgroup or contact site) structure with spatial parameters that depend on topological and geometrical factors underlies the physiological selectivity of glycan-protein (lectin) recognition. We herein tested a panel of bi-, tri- and tetravalent compounds against two plant agglutinins and adhesion/growth-regulatory lectins (galectins). In addition, we examined the impact of headgroup tailoring (converting lactose to 2′-fucosyllactose) in combination with valency increase in two assay types of increasing biorelevance (from solid-phase binding to cell binding). Compounds were prepared using copper-catalysed azide alkyne cycloaddition from peracetylated lactosyl or 2′-fucosyllactosyl azides. Significant inhibition was achieved for the plant toxin with a tetravalent compound. Different levels of sensitivity were noted for the three groups of the galectin family. The headgroup extension to 2′-fucosyllactose led to a selectivity gain, especially for the chimera-type galectin-3. Valency increase established discrimination against the homodimeric proteins, whereas the combination of valency with the headgroup extension led to discrimination against the tandem-repeat-type galectin-8 for chicken galectins but not human galectins-3 and -4. Thus, detailed structure–activity profiling of glycoclusters combined with suitably modifying the contact site for the targeted lectin will help minimize cross-reactivity among this class of closely related proteins.
    细胞糖类日益显现的功能多样性使得合成抑制剂设计的研究成为一个及时的话题。具体而言,配体(或头基或接触位点)结构与依赖于拓扑和几何因素的空间参数的结合构成了糖类-蛋白质(凝集素)识别的生理选择性。本文测试了一系列二价、三价和四价化合物,以针对两种植物凝集素和粘附/生长调节凝集素(伽星素)。此外,我们还研究了头基调节(将乳糖转化为2'-呋喃乳糖)与在两个生物相关性的测定类型中增加价态的结合影响(从固相结合到细胞结合)。化合物通过催化的叠氮炔烃环加成反应,从过乙酰化的乳糖基或2'-呋喃乳糖叠氮化物制备而成。使用四价化合物对植物毒素实现了显著的抑制。伽星素家族的三个组别表现出不同程度的敏感性。将头基延伸至2'-呋喃乳糖带来了选择性增强,特别是对于混合型伽星素-3。增加价态在区分同源二聚体蛋白方面表现出作用,而将价态与头基延伸结合则导致对鸡伽星素的串联重复型伽星素-8的区分,但对人类伽星素-3和-4则没有影响。因此,详细的糖簇结构-活性谱分析结合适当地调节目标凝集素的接触位点,将有助于最小化这一类密切相关蛋白之间的交叉反应性。
  • Exploring Rigid and Flexible Scaffolds to Develop Potent Glucuronic Acid Glycodendrimers for Dengue Virus Inhibition
    作者:Alejandro Merchán、Pedro Ramírez-López、Carlos Martínez、José Ramón Suárez、Almudena Perona、María J. Hernáiz
    DOI:10.1021/acs.bioconjchem.3c00309
    日期:2024.1.17
    Herein, the chemical synthesis and binding analysis of three new sets of rigid, semirigid, and flexible glucuronic acid-based dendrimers bearing different levels of multivalency and their interactions with the dengue virus envelope protein are described. The different oligoalkynyl scaffolds were coupled to glucuronic acid azides by a copper-catalyzed azide–alkyne cycloaddition reaction through optimized
    多价糖树枝状聚合物是研究碳水化合物-蛋白质相互作用的重要工具,其支架是提高特异性和亲和力的重要组成部分。我们小组之前的工作描述了四价葡萄糖醛酸刚性树突的制备,该树突与登革热病毒包膜蛋白具有良好的亲和力( K D = 22 μM)。本文描述了三组新的刚性、半刚性和柔性葡萄糖醛酸基树枝状聚合物的化学合成和结合分析,这些树枝状聚合物具有不同的多价平,以及它们与登革热病毒包膜蛋白的相互作用。通过催化的叠氮化物-炔环加成反应,通过优化的合成策略将不同的低聚炔基支架与葡萄糖醛酸叠氮化物偶联,从而以良好的产率提供所需的糖树枝状聚合物。表面等离子共振研究表明,具有柔性支架的糖树枝状聚合物12b和12c与登革热病毒包膜蛋白具有最佳的结合相互作用( 12b : K D = 0.487 μM 和12c : K D = 0.624 μM)。它们的结合常数值分别比先前研究中使用刚性四价葡萄糖醛酸树突( K D =
  • Effects of Dendron Generation and Salt Concentration on Phase Structures of Dendritic–Linear Block Copolymers with a Semirigid Dendron Containing PEG Tails
    作者:Huanhuan Cai、Guoliang Jiang、Zhihao Shen、Xinghe Fan
    DOI:10.1021/ma300654j
    日期:2012.8.14
    We prepared a series of dendritic linear block copolymers (DLBCPs) bearing a semirigid Percec-type dendron with ionophilic poly(ethylene glycol) (PEG) tails and a polystyrene (PS) linear polymer by nitroxide-mediated living radical polymerization (NMRP). As the DLBCPs are connected by an ester linkage, through hydrolysis the molecular weights of the DLBCPs were precisely characterized by gel permeation chromatography and MALDI-TOF MS. Differential scanning calorimetry, small-angle X-ray scattering, and transmission electron microscopy were used to investigate the phase behaviors of the DLBCPs. Results show that the PEG tails of the semirigid dendron display a cold crystallization peak and a melting peak during the second heating process, while for the neat DLBCPs, the crystallization of the PEG tails is completely inhibited, and only the glass transition temperature (T-g) of the PS block is observed. However, T-g of the dendron block can be observed by complexing the DLBCPs with LiCF3SO3, suggesting that microphase separation occurs in the doped DLBCPs. Comparing the phase behaviors of the DLBCPs having the same dendron weight fraction (w(D) = 0.14) with varying dendron generation and salt concentration, we found that the G(1) or G(2) DLBCP undergoes a phase transition from a hexagonally packed cylinder structure to a lamellar structure with increasing content of LiCF3SO3. However, the G(3) DLBCP only displays a lamellar phase, and the lamellar thickness increases with increasing salt concentration. The difference can be attributed to the different degree of chain branching, which leads to different interface curvature.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫