Intramolecular nucleophilic acyl substitution reactions of halo-substituted esters and lactones. New applications of organosamarium reagents
摘要:
Intramolecular nucleophilic acyl substitution reactions involving a broad range of halo substituted carboxylic acid derivatives have been accomplished in excellent yield employing samarium(II) iodide as the reductive coupling agent. Although particular substrates cyclized most effectively in THF in the presence of tripiperidinophosphine oxide, carboxylic acid esters, the focus of this report, cyclize equally well without such an additive in the presence of a catalytic quantity of iron(III) complexes. Thus a comprehensive series of halo substituted esters were cyclized in excellent yield to the corresponding 4-, 5-, and 6-membered carbocycles. The reaction is extremely mild and selective as demonstrated by experiments wherein alkyl chlorides, acetals, and olefins remain completely intact under the reaction conditions. In addition to introducing a convenient procedure for preparing stereodefined spirocyclic systems, a new ring expansion sequence has been developed that appears extremely general for the preparation of various ring systems.
Intramolecular nucleophilic acyl substitution reactions of halo-substituted esters and lactones. New applications of organosamarium reagents
摘要:
Intramolecular nucleophilic acyl substitution reactions involving a broad range of halo substituted carboxylic acid derivatives have been accomplished in excellent yield employing samarium(II) iodide as the reductive coupling agent. Although particular substrates cyclized most effectively in THF in the presence of tripiperidinophosphine oxide, carboxylic acid esters, the focus of this report, cyclize equally well without such an additive in the presence of a catalytic quantity of iron(III) complexes. Thus a comprehensive series of halo substituted esters were cyclized in excellent yield to the corresponding 4-, 5-, and 6-membered carbocycles. The reaction is extremely mild and selective as demonstrated by experiments wherein alkyl chlorides, acetals, and olefins remain completely intact under the reaction conditions. In addition to introducing a convenient procedure for preparing stereodefined spirocyclic systems, a new ring expansion sequence has been developed that appears extremely general for the preparation of various ring systems.
Visible Light Initiated Photosensitized Electron Transfer Cyclizations of Aldehydes and Ketones to Tethered α,β-Unsaturated Esters: Stereoselective Synthesis of Optically Pure <i>C</i>-Furanosides
作者:Ganesh Pandey、Saumen Hajra、Manas K. Ghorai、K. Ravi Kumar
DOI:10.1021/jo9702812
日期:1997.8.1
Photosensitized one-electron reductive activation of aldehydes/ketones tethered with activated olefins leads to efficient cyclization to give diastereoselective cycloalkanols in high yield. The activation is promoted by secondary and dark electron transfer from visible light (405 nm) initiated photosensitized electron transfer generated 9,10-dicyanoanthracene radical anion (DCA(.-)). The DCA(.-) is produced by electron transfer using either triphenylphosphine (Ph3P) as sacrificial electron donor (PS-A) or 1,5-dimethoxynaphthalene (DMN) as primary electron donor and ascorbic acid as sacrificial electron donor (PS-B), to light-absorbing DCA. The cyclization is suggested to involve ketyl radical intermediate. High trans diastereoselectivity is observed during the formation of cycloalkanols. This cyclization strategy is further extended for the stereoselective synthesis of optically pure C-furanoside (41), starting from naturally occuring L-tartaric acid. The stereochemistry of 41 is suggested based on the single-crystal X-ray diffraction data.