摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3-dimethoxy-5-[(1E,3E)-4-(4-methoxyphenyl)-1,3-butadienyl]benzene | 945484-70-8

中文名称
——
中文别名
——
英文名称
1,3-dimethoxy-5-[(1E,3E)-4-(4-methoxyphenyl)-1,3-butadienyl]benzene
英文别名
1,3-dimethoxy-5-[4-(4-methoxyphenyl)-1,3-butadienyl]benzene;1,3-dimethoxy-5-[(1E,3E)-4-(4-methoxyphenyl)buta-1,3-dienyl]benzene
1,3-dimethoxy-5-[(1E,3E)-4-(4-methoxyphenyl)-1,3-butadienyl]benzene化学式
CAS
945484-70-8
化学式
C19H20O3
mdl
——
分子量
296.366
InChiKey
BZQUNPKDKBSBMM-YDFGWWAZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    88-90 °C(Solvent: Hexane; Diethyl ether)
  • 沸点:
    477.5±40.0 °C(predicted)
  • 密度:
    1.092±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.7
  • 重原子数:
    22
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.16
  • 拓扑面积:
    27.7
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    具有神经保护活性并且不干扰雌激素和芳烃受体介导的转录的新型羟基二苯乙烯类衍生物
    摘要:
    我们合成了一系列新的(E)二苯乙烯类衍生物,其在与反式-白藜芦醇的环位置相同或相似的环位置上含有羟基,并带有一个或两个与4'-OH邻位的给电子基团,我们已经使用它们评估了它们的神经保护活性。谷氨酸攻击的HT22海马神经元可模拟氧化应激诱导的神经元细胞死亡。活性最高的衍生物5-{(E)-2- [3,5-双(1-乙基丙基)-4-羟苯基]乙烯基} -1,3-苯二醇(2),5-[(E)-2 -((3,5-二叔丁基-4-羟基苯基乙烯基)]-1,3-苯二醇(4)和5-{(1 E,3 E)-4- [3,5-双(1-乙基丙基)-4-羟基苯基] -1,3-丁二烯基} -1,3-苯二醇(6)的EC 50值分别为30、45和12 nM。 ,并且是。效力比白藜芦醇高100到400倍。衍生物2,4和6缺乏细胞毒性活性对HT22细胞和雌激素反应元件依赖性基因表达雌激素受体激动剂或拮抗剂活性,并在MCF-7人乳腺癌细胞
    DOI:
    10.1016/j.bmc.2010.11.018
  • 作为产物:
    参考文献:
    名称:
    Engineered Chimeric Enzymes as Tools for Drug Discovery:  Generating Reliable Bacterial Screens for the Detection, Discovery, and Assessment of Estrogen Receptor Modulators
    摘要:
    Engineered protein-based sensors of ligand binding have emerged as attractive tools for the discovery of therapeutic compounds through simple screening systems. We have previously shown that engineered chimeric enzymes, which combine the ligand-binding domains of nuclear hormone receptors with a highly sensitive thymidylate synthase reporter, yield simple sensors that report the presence of hormone-like compounds through changes in bacterial growth. This work describes an optimized estrogen sensor in Escherichia coli with extraordinary reliability in identifying diverse estrogenic compounds and in differentiating between their agonistic/antagonistic pharmacological effects. The ability of this system to assist the discovery of new estrogen-mimicking compounds was validated by screening a small compound library, which led to the identification of two structurally novel estrogen receptor modulators and the accurate prediction of their agonistic/antagonistic biocharacter in human cells. Strong evidence is presented here that the ability of our sensor to detect ligand binding and recognize pharmacologically critical properties arises from allosteric communication between the artificially combined protein domains, where different ligand-induced conformational changes in the receptor are transmitted to the catalytic domain and translated to distinct levels of enzymic efficiency. To the best of our knowledge, this is one of the first examples of an engineered enzyme with the ability to sense multiple receptor conformations and to be either activated or inactivated depending on the nature of the bound effector molecule. Because the proposed mechanism of ligand dependence is not specific to nuclear hormone receptors, we anticipate that our protein engineering strategy will be applicable to the construction of simple sensors for different classes of (therapeutic) binding proteins.
    DOI:
    10.1021/ja067754j
点击查看最新优质反应信息

文献信息

  • [DE] COX-II-INHIBITORVERBINDUNGEN<br/>[EN] COX-II INHIBITOR COMPOUNDS<br/>[FR] COMPOSES INHIBITEURS DE COX-II
    申请人:UNIV WIEN
    公开号:WO2006029436A1
    公开(公告)日:2006-03-23
    Die Erfindung betrifft Verbindungen der allgemeinen Formel (I), wobei X = -CH- oder -N=, n = O oder 1, R1 = -H, -F, -OCH3 oder -COOCH3, R2 = -H oder -F, R3 = -H, oder R2 und R3 gemeinsam -CH2-CH2- sind, R4 = -H oder -OCH3, R5 = -H, -OCH3 oder -SO2CH3, und R6 = -H oder -OCH3, mit der Maßgabe, dass mindestens zwei von R1, R4, R5 und R6 nicht Wasserstoff sind, welche Verbindungen als selektive COX-II-Inhibitoren wirken.
    本发明涉及一般式(I)的化合物,其中X = -CH-或-N =,n = O或1,R1 = -H,-F,-OCH3或-COOCH3,R2 = -H或-F,R3 = -H,或R2和R3共同为-CH2-CH2-,R4 = -H或-OCH3,R5 = -H,-OCH3或-SO2CH3,以及R6 = -H或-OCH3,但至少有两个R1,R4,R5和R6不是氢原子,这些化合物作为选择性COX-II抑制剂。
  • New hydroxystilbenoid derivatives endowed with neuroprotective activity and devoid of interference with estrogen and aryl hydrocarbon receptor-mediated transcription
    作者:Carolina Villalonga-Barber、Aggeliki K. Meligova、Xanthippi Alexi、Barry R. Steele、Constantinos E. Kouzinos、Constantinos G. Screttas、Efrosini S. Katsanou、Maria Micha-Screttas、Michael N. Alexis
    DOI:10.1016/j.bmc.2010.11.018
    日期:2011.1
    100 to 400-fold more potent than resveratrol. Derivatives 2, 4 and 6 lacked cytotoxic activity against HT22 cells and estrogen receptor agonist or antagonist activity in estrogen response element-dependent gene expression and in estrogen-dependent proliferation of MCF-7 human breast cancer cells. In addition, they were incapable of interfering with aryl hydrocarbon receptor-mediated xenobiotic response
    我们合成了一系列新的(E)二苯乙烯类衍生物,其在与反式-白藜芦醇的环位置相同或相似的环位置上含有羟基,并带有一个或两个与4'-OH邻位的给电子基团,我们已经使用它们评估了它们的神经保护活性。谷氨酸攻击的HT22海马神经元可模拟氧化应激诱导的神经元细胞死亡。活性最高的衍生物5-(E)-2- [3,5-双(1-乙基丙基)-4-羟苯基]乙烯基} -1,3-苯二醇(2),5-[(E)-2 -((3,5-二叔丁基-4-羟基苯基乙烯基)]-1,3-苯二醇(4)和5-(1 E,3 E)-4- [3,5-双(1-乙基丙基)-4-羟基苯基] -1,3-丁二烯基} -1,3-苯二醇(6)的EC 50值分别为30、45和12 nM。 ,并且是。效力比白藜芦醇高100到400倍。衍生物2,4和6缺乏细胞毒性活性对HT22细胞和雌激素反应元件依赖性基因表达雌激素受体激动剂或拮抗剂活性,并在MCF-7人乳腺癌细胞
  • Engineered Chimeric Enzymes as Tools for Drug Discovery:  Generating Reliable Bacterial Screens for the Detection, Discovery, and Assessment of Estrogen Receptor Modulators
    作者:Georgios Skretas、Aggeliki K. Meligova、Carolina Villalonga-Barber、Dimitra J. Mitsiou、Michael N. Alexis、Maria Micha-Screttas、Barry R. Steele、Constantinos G. Screttas、David W. Wood
    DOI:10.1021/ja067754j
    日期:2007.7.1
    Engineered protein-based sensors of ligand binding have emerged as attractive tools for the discovery of therapeutic compounds through simple screening systems. We have previously shown that engineered chimeric enzymes, which combine the ligand-binding domains of nuclear hormone receptors with a highly sensitive thymidylate synthase reporter, yield simple sensors that report the presence of hormone-like compounds through changes in bacterial growth. This work describes an optimized estrogen sensor in Escherichia coli with extraordinary reliability in identifying diverse estrogenic compounds and in differentiating between their agonistic/antagonistic pharmacological effects. The ability of this system to assist the discovery of new estrogen-mimicking compounds was validated by screening a small compound library, which led to the identification of two structurally novel estrogen receptor modulators and the accurate prediction of their agonistic/antagonistic biocharacter in human cells. Strong evidence is presented here that the ability of our sensor to detect ligand binding and recognize pharmacologically critical properties arises from allosteric communication between the artificially combined protein domains, where different ligand-induced conformational changes in the receptor are transmitted to the catalytic domain and translated to distinct levels of enzymic efficiency. To the best of our knowledge, this is one of the first examples of an engineered enzyme with the ability to sense multiple receptor conformations and to be either activated or inactivated depending on the nature of the bound effector molecule. Because the proposed mechanism of ligand dependence is not specific to nuclear hormone receptors, we anticipate that our protein engineering strategy will be applicable to the construction of simple sensors for different classes of (therapeutic) binding proteins.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐