摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-β-D-glucopyranoside | 209746-56-5

中文名称
——
中文别名
——
英文名称
3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-β-D-glucopyranoside
英文别名
3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-β-D-glycopyranoside;T-1095A;3-(5-benzo[b]furanyl)-2'-(β-D-glucopyranosyloxy)-6'-hydroxy-4'-methylpropiophenone;3-(1-benzofuran-5-yl)-1-[2-hydroxy-4-methyl-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]propan-1-one
3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-β-D-glucopyranoside化学式
CAS
209746-56-5
化学式
C24H26O9
mdl
——
分子量
458.465
InChiKey
GMYFQAHYWIYNES-PFKOEMKTSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    727.6±60.0 °C(Predicted)
  • 密度:
    1.446±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    33
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.38
  • 拓扑面积:
    150
  • 氢给体数:
    5
  • 氢受体数:
    9

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-β-D-glucopyranoside2,4,6-三甲基吡啶potassium carbonate 作用下, 以 二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 12.5h, 生成 Carbonic acid (2R,3S,4S,5R,6S)-6-[3-allyloxy-2-(3-benzofuran-5-yl-propionyl)-5-methyl-phenoxy]-3,4,5-trihydroxy-tetrahydro-pyran-2-ylmethyl ester ethyl ester
    参考文献:
    名称:
    Na+-Glucose Cotransporter (SGLT) Inhibitors as Antidiabetic Agents. 4. Synthesis and Pharmacological Properties of 4‘-Dehydroxyphlorizin Derivatives Substituted on the B Ring
    摘要:
    In our studies of Na+-glucose cotransporter (SGLT) inhibitors as antidiabetic agents, a series of novel 4'-dehydroxyphlorizin derivatives substituted on the B ring was prepared and their effects on urinary glucose excretion were evaluated in rats. Introduction of only a small alkyl group at the 4'-position increased the activity, and 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-beta-D-glucopyranoside (4) showed the most potent effect. To overcome hydrolysis of compound 4 by beta-glucosidase in the digestive tract, the OH groups on the glucose moiety of compound 4 were modified. Three prodrugs (5, 42, and 55) were more potent than the parent compound 4 by oral administration, and finally 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-(6-O-methoxycarbonyl-beta-D-glucopyranoside) (5) was selected as a new promising candidate. Compound 5 was metabolized mainly by liver esterase to the active form (4), which was about 10 times more potent than 5 in inhibiting SGLT. In oral glucose tolerance test in db/db mice, compound 5 dose-dependently suppressed the elevation of glucose levels. Single administration of 5 reduced hyperglycemia concurrently with increase of glucose excretion into urine in diabetic KK-A(y) mice. Furthermore, compound 5 suppressed the elevation of blood glucose levels but did not lower it below the normal level even in fasted conditions in KK-A(y) mice. Additionally, long-term treatment with 5 dose-dependently reduced hyperglycemia and HbA1c in KK-A(y) mice. These pharmacological data strongly suggest that compound 5 has a therapeutic potential in the treatment of NIDDM.
    DOI:
    10.1021/jm990175n
  • 作为产物:
    参考文献:
    名称:
    Na+-Glucose Cotransporter (SGLT) Inhibitors as Antidiabetic Agents. 4. Synthesis and Pharmacological Properties of 4‘-Dehydroxyphlorizin Derivatives Substituted on the B Ring
    摘要:
    In our studies of Na+-glucose cotransporter (SGLT) inhibitors as antidiabetic agents, a series of novel 4'-dehydroxyphlorizin derivatives substituted on the B ring was prepared and their effects on urinary glucose excretion were evaluated in rats. Introduction of only a small alkyl group at the 4'-position increased the activity, and 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-beta-D-glucopyranoside (4) showed the most potent effect. To overcome hydrolysis of compound 4 by beta-glucosidase in the digestive tract, the OH groups on the glucose moiety of compound 4 were modified. Three prodrugs (5, 42, and 55) were more potent than the parent compound 4 by oral administration, and finally 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-(6-O-methoxycarbonyl-beta-D-glucopyranoside) (5) was selected as a new promising candidate. Compound 5 was metabolized mainly by liver esterase to the active form (4), which was about 10 times more potent than 5 in inhibiting SGLT. In oral glucose tolerance test in db/db mice, compound 5 dose-dependently suppressed the elevation of glucose levels. Single administration of 5 reduced hyperglycemia concurrently with increase of glucose excretion into urine in diabetic KK-A(y) mice. Furthermore, compound 5 suppressed the elevation of blood glucose levels but did not lower it below the normal level even in fasted conditions in KK-A(y) mice. Additionally, long-term treatment with 5 dose-dependently reduced hyperglycemia and HbA1c in KK-A(y) mice. These pharmacological data strongly suggest that compound 5 has a therapeutic potential in the treatment of NIDDM.
    DOI:
    10.1021/jm990175n
点击查看最新优质反应信息

文献信息

  • Propiophenone derivatives and process for preparing the same
    申请人:Tanabe Seiyaku Co., Ltd.
    公开号:US06048842A1
    公开(公告)日:2000-04-11
    A propiophenone derivative of the formula (I): ##STR1## wherein OX is a hydroxy group which may optionally be protected, Y is a lower alkyl group, and Z is a .beta.-D-glucopyranosyl group wherein one or more hydroxy groups may optionally be protected, or a pharmaceutically acceptable salt thereof. Said compounds have excellent hypoglycemic activity so that they are useful in the prophylaxis or treatment of diabetes.
    一种具有以下结构的丙酮苯甲酮衍生物(I):其中OX是一个氢氧基团,可以选择性地受保护,Y是一个较低的烷基基团,Z是一个β-D-葡萄糖吡喃基团,其中一个或多个氢氧基团可以选择性地受保护,或其药用盐。这些化合物具有出色的降糖活性,因此它们在糖尿病的预防或治疗中非常有用。
  • J. Med. Chem. 1999, 42, 5311-5324
    作者:
    DOI:——
    日期:——
  • JPH10237089A
    申请人:——
    公开号:JPH10237089A
    公开(公告)日:1998-09-08
  • US6048842A
    申请人:——
    公开号:US6048842A
    公开(公告)日:2000-04-11
  • Na<sup>+</sup>-Glucose Cotransporter (SGLT) Inhibitors as Antidiabetic Agents. 4. Synthesis and Pharmacological Properties of 4‘-Dehydroxyphlorizin Derivatives Substituted on the B Ring
    作者:Kenji Tsujihara、Mitsuya Hongu、Kunio Saito、Hiroyuki Kawanishi、Kayoko Kuriyama、Mamoru Matsumoto、Akira Oku、Kiichiro Ueta、Minoru Tsuda、Akira Saito
    DOI:10.1021/jm990175n
    日期:1999.12.1
    In our studies of Na+-glucose cotransporter (SGLT) inhibitors as antidiabetic agents, a series of novel 4'-dehydroxyphlorizin derivatives substituted on the B ring was prepared and their effects on urinary glucose excretion were evaluated in rats. Introduction of only a small alkyl group at the 4'-position increased the activity, and 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-beta-D-glucopyranoside (4) showed the most potent effect. To overcome hydrolysis of compound 4 by beta-glucosidase in the digestive tract, the OH groups on the glucose moiety of compound 4 were modified. Three prodrugs (5, 42, and 55) were more potent than the parent compound 4 by oral administration, and finally 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-(6-O-methoxycarbonyl-beta-D-glucopyranoside) (5) was selected as a new promising candidate. Compound 5 was metabolized mainly by liver esterase to the active form (4), which was about 10 times more potent than 5 in inhibiting SGLT. In oral glucose tolerance test in db/db mice, compound 5 dose-dependently suppressed the elevation of glucose levels. Single administration of 5 reduced hyperglycemia concurrently with increase of glucose excretion into urine in diabetic KK-A(y) mice. Furthermore, compound 5 suppressed the elevation of blood glucose levels but did not lower it below the normal level even in fasted conditions in KK-A(y) mice. Additionally, long-term treatment with 5 dose-dependently reduced hyperglycemia and HbA1c in KK-A(y) mice. These pharmacological data strongly suggest that compound 5 has a therapeutic potential in the treatment of NIDDM.
查看更多