摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N',N''-dihexadecyl-L-glutamine | 94989-30-7

中文名称
——
中文别名
——
英文名称
N',N''-dihexadecyl-L-glutamine
英文别名
N',N''-dihexadecyl-L-glutamide;(2S)-2-amino-N,N'-dihexadecylpentanediamide
N',N''-dihexadecyl-L-glutamine化学式
CAS
94989-30-7
化学式
C37H75N3O2
mdl
——
分子量
594.021
InChiKey
XULRGXBFSUKZHB-DHUJRADRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    88-102 °C
  • 沸点:
    728.0±55.0 °C(Predicted)
  • 密度:
    0.906±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    13.8
  • 重原子数:
    42
  • 可旋转键数:
    34
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.95
  • 拓扑面积:
    84.2
  • 氢给体数:
    3
  • 氢受体数:
    3

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-CBZ-beta-丙氨酸N',N''-dihexadecyl-L-glutamine氰基磷酸二乙酯三乙胺 作用下, 以 四氢呋喃 为溶剂, 反应 24.5h, 以68%的产率得到N',N''-dihexadecyl-Nα-[3-(N'''-benzyloxycarbonyl)aminopropanoyl]-L-glutamide
    参考文献:
    名称:
    Formation of specific dipolar microenvironments complementary to dipolar betaine dye by nonionic peptide lipids in nonpolar medium
    摘要:
    本文描述了非离子肽脂与非极性非质子有机溶剂中的溶剂化变色二甲基染料之间的主客体相互作用。我们偶然发现,在氯苯中,当存在具有苄氧羰基化Gly头部基团的L-谷氨酸衍生肽脂1时,Reichardt染料(以下简称ET(30),尽管ET(30)曾被用作极性参数)的颜色异常蓝移。由于广泛认为ET(30)表现出负溶剂化变色性,即随着溶剂极性增加,这种染料的可见吸收带蓝移,因此蓝移表明,在无聚集条件下,ET(30)接触到由肽脂1产生的更极性的微环境,而不是氯苯。结合位点被假设为分别附着在Gly残基两侧的N-Hδ+和COδ-,即ET(30)的O-和N+分别通过氢键和离子-偶极相互作用与N-Hδ+和COδ-互补结合。由于ET(30)实际上是非荧光的,无法使用荧光光谱法(这是研究主客体相互作用的有力方法)来指定ET(30)的结合模式。因此,采用了一种合成方法(尽管非常费力但可靠),并与可见吸收光谱的溶剂化变色探针相结合,以指定肽脂1上的结合位点。结合位点已被发现位于两个偶极上,即分别附着在Gly残基两侧的N-Hδ+和COδ-,因为使用具有庞大α取代基的几种L-α-氨基酸引入Gly部分的立体阻碍干扰了ET(30)的结合。通过用肌氨酸(Sar)替换脂1的Gly残基,观察到ET(30)的类似特定结合行为。发现肽脂的自组装对于有效捕获ET(30)是必要的。还研究了形成与二甲基染料互补的特定极性微环境的肽脂的分子结构要求。
    DOI:
    10.1039/b818218c
  • 作为产物:
    参考文献:
    名称:
    具有低聚-L-谷氨酸-头基团的两亲分子从单壁双层形成螺旋超结构
    摘要:
    制备了具有低聚-L-谷氨酸头基团的双链烷基两亲物。这些化合物分散在 pH 值为 8 至 9 的水中以形成双层聚集体,其中包含螺旋和中空结构。在溶液中观察到新的 CD 带。
    DOI:
    10.1246/cl.1984.1713
点击查看最新优质反应信息

文献信息

  • Molecular structural requirements, dye specificity, and application of anionic peptide amphiphiles that induce intense fluorescence in cationic dyes
    作者:Hiroshi Hachisako、Naoya Ryu、Ryoichi Murakami
    DOI:10.1039/b818206j
    日期:——
    acid with relatively shorter side-chain methylenes. The dye specificity in terms of induction of the intense fluorescence was also investigated using hemicyanines (stilbazoliumetc.), cyanine, carbocyanine, thiacarbocyanines, and azo dye. The amphiphile with the shortest octanoyl-β-alanyl double-chain alkyl groups, longer side-chain, and shorter spacer was found to show increased sensitivity to alkali
    我们以前曾报道过,能够在分子间形成三氢键的双链阴离子两亲物可能在水中形成极疏水的位点。 水特别是掺入了基于噻唑鎓的紧凑型半花青染料作为单体物质,从而导致染料中强烈的荧光发射。本文研究了强荧光诱导两亲物的结构要求。注意到将β-Ala残基引入两个长链烷基基团对于衍生自的两亲物最有效L-谷氨酸具有相对较短的侧链亚甲基。还使用半花菁(stilbazolium等),花菁,碳花菁,硫代碳菁和偶氮染料研究了染料在诱导强荧光方面的特异性。发现具有最短的辛酰基-β-丙氨酰基双链烷基,侧链较长和间隔基较短的两亲物显示出对碱金属离子,特别是Li +的敏感性增加。这可能是Li +的潜在OFF-ON型荧光传感器。
  • Self-Assembly of an Amphiphilic OEG-Linked Glutamide Lipid
    作者:Shuo Wang、Youguo Zhang、Qiang Li、Rongqin Sun、Lin Ma、Liangchun Li
    DOI:10.1071/ch16127
    日期:——
    Amphiphilic peptides with or without oligoethylene glycol (OEG) chains based on 3,4-bis(benzyloxy)benzoic-linked glutamide were designed and their self-assembly was investigated. It was found that the amphiphilic peptide 3 with OEG chains could not only form stable gels in a wide range of solvents, but also showed better solubility in solvents than those without OEG chains. Fibrillar and nanotube structures
    设计了基于3,4-双(苄氧基)苯甲酸连接的谷氨酰胺的带或不带低聚乙二醇(OEG)链的两亲性肽,并研究了它们的自组装。发现具有OEG​​链的两亲肽3不仅可以在多种溶剂中形成稳定的凝胶,而且与没有OEG链的两性肽3相比,在溶剂中显示出更好的溶解性。在形成的凝胶中发现了原纤维和纳米管结构,并且可以通过增加水含量来调节纤维的宽度。UV-vis和XRD结果表明,肽自组装的驱动力主要是分子间π-π和氢键相互作用。这些结果提供了对基于OEG的两亲性肽形成的纳米原纤维的自组装机制和大小控制的更深入的了解。
  • Formation of specific dipolar microenvironments complementary to dipolar betaine dye by nonionic peptide lipids in nonpolar medium
    作者:Hiroshi Hachisako、Naoya Ryu、Hiromi Hashimoto、Ryoichi Murakami
    DOI:10.1039/b818218c
    日期:——
    This paper describes the host–guest interaction between nonionic peptide lipids and solvatochromic dipolar betaine dyes in nonpolar aprotic organic solvent. We have serendipitously found that the colour of Reichardt's Dye (referred to as ET(30) hereafter, although the term ET(30) has been used as a polarity parameter) in chlorobenzene unusually blue-shifted in the presence of L-glutamic acid-derived peptide lipid 1 with a benzyloxycarbonylated Gly headgroup. Since it is widely accepted that ET(30) shows negative solvatochromism, i.e., the visible absorption band of this dye blue-shifts as the solvent polarity increases, the blue-shift indicates that ET(30) was in contact with the more polar microenvironment produced by the peptide lipid 1 rather than chlorobenzene under aggregate-free conditions. The binding site was assumed to be N-Hδ+ and COδ− attached to both sides of the Gly residue, respectively, i.e., the O− and N+ of ET(30) complementarily bound to N-Hδ+ and COδ− through hydrogen bonding and ion-dipole interaction, respectively. Since ET(30) is practically non-fluorescent, it was not feasible to use fluorescence spectrometry, which is a powerful method for the study of host–guest interactions, in order to specify the binding mode of ET(30). Therefore, a synthetic approach, although very laborious but reliable, has been used in conjunction with solvatochromic probing using visible absorption spectroscopy to specify the binding site on peptide lipid 1. The binding site has been found to be located on two dipoles, i.e., N-Hδ+ and COδ− attached to both sides of the Gly residue, respectively, because introducing steric hindrance into the Gly moiety using several L-α-amino acids with bulky α-substituents interfered with the binding of ET(30). Similar specific binding behaviour of ET(30) was observed by replacing the Gly residue of the lipid 1 with sarcosine (Sar). It was found that self-assembly of the peptide lipid was necessary for effective capture of ET(30). The molecular structural requirements of the peptide lipids that form such specific polar microenvironments complementary to dipolar betaine dyes have also been investigated.
    本文描述了非离子肽脂与非极性非质子有机溶剂中的溶剂化变色二甲基染料之间的主客体相互作用。我们偶然发现,在氯苯中,当存在具有苄氧羰基化Gly头部基团的L-谷氨酸衍生肽脂1时,Reichardt染料(以下简称ET(30),尽管ET(30)曾被用作极性参数)的颜色异常蓝移。由于广泛认为ET(30)表现出负溶剂化变色性,即随着溶剂极性增加,这种染料的可见吸收带蓝移,因此蓝移表明,在无聚集条件下,ET(30)接触到由肽脂1产生的更极性的微环境,而不是氯苯。结合位点被假设为分别附着在Gly残基两侧的N-Hδ+和COδ-,即ET(30)的O-和N+分别通过氢键和离子-偶极相互作用与N-Hδ+和COδ-互补结合。由于ET(30)实际上是非荧光的,无法使用荧光光谱法(这是研究主客体相互作用的有力方法)来指定ET(30)的结合模式。因此,采用了一种合成方法(尽管非常费力但可靠),并与可见吸收光谱的溶剂化变色探针相结合,以指定肽脂1上的结合位点。结合位点已被发现位于两个偶极上,即分别附着在Gly残基两侧的N-Hδ+和COδ-,因为使用具有庞大α取代基的几种L-α-氨基酸引入Gly部分的立体阻碍干扰了ET(30)的结合。通过用肌氨酸(Sar)替换脂1的Gly残基,观察到ET(30)的类似特定结合行为。发现肽脂的自组装对于有效捕获ET(30)是必要的。还研究了形成与二甲基染料互补的特定极性微环境的肽脂的分子结构要求。
  • FORMATION OF HELICAL SUPER STRUCTURE FROM SINGLE-WALLED BILAYERS BY AMPHIPHILES WITH OLIGO-L-GLUTAMIC ACID-HEAD GROUP
    作者:Kimiho Yamada、Hirotaka Ihara、Toshio Ide、Takanori Fukumoto、Chuichi Hirayama
    DOI:10.1246/cl.1984.1713
    日期:1984.10.5
    Double-chain alkyl amphiphiles with oligo-L-glutamic acid-head group were prepared. These compounds were dispersed in water at pH 8 to 9 to form bilayer aggregates, in which helical and hollow structures were contained. New CD bands were observed in the solution.
    制备了具有低聚-L-谷氨酸头基团的双链烷基两亲物。这些化合物分散在 pH 值为 8 至 9 的水中以形成双层聚集体,其中包含螺旋和中空结构。在溶液中观察到新的 CD 带。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物