摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Boc-Phe-Thr(Bn)-Leu-OBn | 175444-41-4

中文名称
——
中文别名
——
英文名称
Boc-Phe-Thr(Bn)-Leu-OBn
英文别名
benzyl (2S)-4-methyl-2-[[(2S,3R)-2-[[(2S)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylpropanoyl]amino]-3-phenylmethoxybutanoyl]amino]pentanoate
Boc-Phe-Thr(Bn)-Leu-OBn化学式
CAS
175444-41-4
化学式
C38H49N3O7
mdl
——
分子量
659.823
InChiKey
PLXBXEMUCKSCJD-XQSZSLLBSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.6
  • 重原子数:
    48
  • 可旋转键数:
    19
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.42
  • 拓扑面积:
    132
  • 氢给体数:
    3
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Synthesis and Biological Activity of the Prodrug of Class I Major Histocompatibility Peptide GILGFVFTL Activated by β-Glucuronidase
    摘要:
    The first synthesis of a prodrug of HLA-A.2.1 associated antigenic influenza peptide 2a was accomplished. Two methods for synthesis of prodrugs of antigenic peptides activated by beta-glucuronidase and comprising a self-immolative 3-nitrobenzyloxycarbonyl moiety were investigated. Reaction of P-glucuronic acid glycoside of 4-hydroxy-3-nitrobenzyl alcohol (3) with N,N'-disuccinimidyl carbonate (DSC) followed by conjugation with AlaOMe, Gly, Thr, Phe-Leu, and Leu-Arg gave carbamates 4a-4f. Deacetylation of 4b and 4e with MeONa/MeOH gave beta-glucuronides 5b and 5e. Compound 5e was converted to P-glucuronic acid conjugate 6e by the action of pig liver esterase (PLE). Compound 6e is a substrate for beta-glucuronidase. Method of a direct introduction of the prodrug residue into antigenic nonapeptide GILGFVFTL (2b) failed. Alternately, glycine conjugate 5b was activated to pentafluorophenyl ester 10. Model coupling of 10 with Phe-Leu gave tripeptide conjugate ester 11a which was hydrolyzed by PLE to uronic acid 12. Condensation of 10 with octapeptide ILGFVFTL (9) gave prodrug precursor 11b. Octapeptide 9 was prepared by de novo synthesis using a racemization-free fragment coupling method. Ester hydrolysis with Ba(OH)(2)/MeOH gave the target prodrug 2a which is a substrate for beta-glucuronidase. Prodrug 2a does not bind to HLA-A2.1 of T2 human cells defective in major histocompatibility complex I (MHC I)-associated peptide processing. Addition of beta-glucuronidase restored the binding to the level observed with parent nonapeptide 2b although higher concentrations of prodrug 2a and enzyme were necessary.
    DOI:
    10.1021/jm010352w
  • 作为产物:
    描述:
    参考文献:
    名称:
    Synthesis and Biological Activity of the Prodrug of Class I Major Histocompatibility Peptide GILGFVFTL Activated by β-Glucuronidase
    摘要:
    The first synthesis of a prodrug of HLA-A.2.1 associated antigenic influenza peptide 2a was accomplished. Two methods for synthesis of prodrugs of antigenic peptides activated by beta-glucuronidase and comprising a self-immolative 3-nitrobenzyloxycarbonyl moiety were investigated. Reaction of P-glucuronic acid glycoside of 4-hydroxy-3-nitrobenzyl alcohol (3) with N,N'-disuccinimidyl carbonate (DSC) followed by conjugation with AlaOMe, Gly, Thr, Phe-Leu, and Leu-Arg gave carbamates 4a-4f. Deacetylation of 4b and 4e with MeONa/MeOH gave beta-glucuronides 5b and 5e. Compound 5e was converted to P-glucuronic acid conjugate 6e by the action of pig liver esterase (PLE). Compound 6e is a substrate for beta-glucuronidase. Method of a direct introduction of the prodrug residue into antigenic nonapeptide GILGFVFTL (2b) failed. Alternately, glycine conjugate 5b was activated to pentafluorophenyl ester 10. Model coupling of 10 with Phe-Leu gave tripeptide conjugate ester 11a which was hydrolyzed by PLE to uronic acid 12. Condensation of 10 with octapeptide ILGFVFTL (9) gave prodrug precursor 11b. Octapeptide 9 was prepared by de novo synthesis using a racemization-free fragment coupling method. Ester hydrolysis with Ba(OH)(2)/MeOH gave the target prodrug 2a which is a substrate for beta-glucuronidase. Prodrug 2a does not bind to HLA-A2.1 of T2 human cells defective in major histocompatibility complex I (MHC I)-associated peptide processing. Addition of beta-glucuronidase restored the binding to the level observed with parent nonapeptide 2b although higher concentrations of prodrug 2a and enzyme were necessary.
    DOI:
    10.1021/jm010352w
点击查看最新优质反应信息

文献信息

  • Partially Modified Retro-Inverso Pseudopeptides as Non-natural Ligands for the Human Class I Histocompatibility Molecule HLA-A2
    作者:Gilles Guichard、Francine Connan、Roland Graff、Marina Ostankovitch、Sylviane Muller、Jean-Gérard Guillet、Jeannine Choppin、Jean-Paul Briand
    DOI:10.1021/jm9509511
    日期:1996.1.1
    Syntheses of a series of partially modified retro-inverso analogues of the antigenic peptide M58-66 derived from the influenza virus matrix protein are reported. The retro-inverso modification Psi(NH-CO) was obtained by replacement of two successive amino acid residues with a 2-substituted malonate derivative and gem-diaminoalkyl residue. The resulting compounds 1-8 were tested for their binding to the human histocompatibility class I molecule HLA-A2 in an assembly assay using lysates of peptide transporter-deficient cells T2. Specific peptide-dependent HLA-A2 assembly was revealed by an enzyme-linked immunosorbent assay. Significant HLA-A2 assembly was detected in the presence of analogues [gGly(58)-(S)mLeu(59)]-M58-66 (1a), [gGly(61)-(R,S)mPhe(62)]M58-66 (4), [gVal(63)-(R,S)mPhe(64)]M58-66 (6), and [gPhe(64)-(R,S)mAla(65)]M58-66 (7). The introduction of the retro-inverso modification between P2-P3, P3-P4, P5-P6, and P8-P9 (compounds 2, 3, 5, and 8, respectively) however led to a dramatic reduction in peptide binding to HLA-A2. Interestingly, compound 1a which contains modification between P1-P2 was found to be the most potent analogue, being able to retain the original HLA-A2 binding profile of the parent peptide M58-66. Taken together, these results and recent binding data obtained in the context of murine MHC class I molecule H-2K(d) suggest that the incorporation of peptide bond surrogates in MHC class I-restricted epitopes is a useful approach to design molecules having both increased stability and high MHC-binding capacity. Depending on their agonist or antagonist effects at the T-cell receptor, such non-natural MHC ligands are likely to find many applications in the development of peptide-based vaccines or as potential therapeutic agents in the treatment of allergies and autoimmune diseases.
  • Synthesis and Biological Activity of the Prodrug of Class I Major Histocompatibility Peptide GILGFVFTL Activated by β-Glucuronidase
    作者:Sharad Rawale、Lew M. Hrihorczuk、Wei、Jiri Zemlicka
    DOI:10.1021/jm010352w
    日期:2002.2.1
    The first synthesis of a prodrug of HLA-A.2.1 associated antigenic influenza peptide 2a was accomplished. Two methods for synthesis of prodrugs of antigenic peptides activated by beta-glucuronidase and comprising a self-immolative 3-nitrobenzyloxycarbonyl moiety were investigated. Reaction of P-glucuronic acid glycoside of 4-hydroxy-3-nitrobenzyl alcohol (3) with N,N'-disuccinimidyl carbonate (DSC) followed by conjugation with AlaOMe, Gly, Thr, Phe-Leu, and Leu-Arg gave carbamates 4a-4f. Deacetylation of 4b and 4e with MeONa/MeOH gave beta-glucuronides 5b and 5e. Compound 5e was converted to P-glucuronic acid conjugate 6e by the action of pig liver esterase (PLE). Compound 6e is a substrate for beta-glucuronidase. Method of a direct introduction of the prodrug residue into antigenic nonapeptide GILGFVFTL (2b) failed. Alternately, glycine conjugate 5b was activated to pentafluorophenyl ester 10. Model coupling of 10 with Phe-Leu gave tripeptide conjugate ester 11a which was hydrolyzed by PLE to uronic acid 12. Condensation of 10 with octapeptide ILGFVFTL (9) gave prodrug precursor 11b. Octapeptide 9 was prepared by de novo synthesis using a racemization-free fragment coupling method. Ester hydrolysis with Ba(OH)(2)/MeOH gave the target prodrug 2a which is a substrate for beta-glucuronidase. Prodrug 2a does not bind to HLA-A2.1 of T2 human cells defective in major histocompatibility complex I (MHC I)-associated peptide processing. Addition of beta-glucuronidase restored the binding to the level observed with parent nonapeptide 2b although higher concentrations of prodrug 2a and enzyme were necessary.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物