摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-hydroxy-hexan-2-one

中文名称
——
中文别名
——
英文名称
5-hydroxy-hexan-2-one
英文别名
5-hydroxy-2-hexanone;(5S)-hydroxyhexane-2-one;(5S)-hydroxy-2-hexanone;(S)-5-Hydroxyhexan-2-one;(5S)-5-hydroxyhexan-2-one
5-hydroxy-hexan-2-one化学式
CAS
——
化学式
C6H12O2
mdl
——
分子量
116.16
InChiKey
ZSDLLTJVENEIDW-YFKPBYRVSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0
  • 重原子数:
    8
  • 可旋转键数:
    3
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.83
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    (2S,5S)-2,5-己二醇 在 Rhodococcus ruber DSM 44541 作用下, 以 异丙醇丙酮 为溶剂, 反应 96.0h, 生成 5-hydroxy-hexan-2-one
    参考文献:
    名称:
    通过生物催化氢转移进行二酮的区域和立体选择性还原和二醇的氧化
    摘要:
    通过使用含有乙醇脱氢 ADH-'A' 的红球菌 DSM 44541 的冻干细胞,研究了对称和非对称二酮的不对称还原以及通过生物催化氢转移对各种二醇的立体选择性氧化。(ω-1)-和 (ω-2)-位置的对称和非对称二酮被还原为具有高立体偏好的 Prelog 产物,而空间上要求更高的酮部分,例如 (ω-3)-位置的那些,保持不变。对于氧化模式,实现了伯醇和仲醇之间的区别,并且在(ω-1)-和(ω-2)-位的(S)构型的仲醇被优先氧化。(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
    DOI:
    10.1002/ejoc.200500839
点击查看最新优质反应信息

文献信息

  • Highly Efficient Synthesis of Enantiopure DiacetylatedC2-Symmetric Diols by Ruthenium- and Enzyme-Catalyzed Dynamic Kinetic Asymmetric Transformation (DYKAT)
    作者:Belén Martín-Matute、Michaela Edin、Jan-E. Bäckvall
    DOI:10.1002/chem.200600257
    日期:2006.8.7
    starting from commercially available mixtures of the diols (dl/meso approximately 1:1) has been realized by combining a fast ruthenium-catalyzed epimerization with an enzymatic transesterification. The in situ coupling of these two processes produces the diacetates in high yield in >99 % enantiomeric excess.
    通过将快速钌催化的差向异构化与酶促酯交换反应相结合,已经从可商购获得的二醇混合物(dl / meso约为1:1)开始高效合成2,4-戊二醇和2,5-己二醇的对映体纯二乙酸酯。这两个过程的原位偶合以> 99%对映体过量的高收率生产出二乙酸酯。
  • Biocatalytical production of (5S)-hydroxy-2-hexanone
    作者:Michael Katzberg、Kerstin Wechler、Marion Müller、Pascal Dünkelmann、Jürgen Stohrer、Werner Hummel、Martin Bertau
    DOI:10.1039/b816364b
    日期:——
    Biocatalytical approaches have been investigated in order to improve accessibility of the bifunctional chiral building block (5S)-hydroxy-2-hexanone ((S)-2). As a result, a new synthetic route starting from 2,5-hexanedione (1) was developed for (S)-2, which is produced with high enantioselectivity (ee >99%). Since (S)-2 can be reduced further to furnish (2S,5S)-hexanediol ((2S,5S)-3), chemoselectivity is a major issue. Among the tested biocatalysts the whole-cell system S. cerevisiae L13 surpasses the bacterial dehydrogenase ADH-T in terms of chemoselectivity. The use of whole-cells of S. cerevisiae L13 affords (S)-2 from prochiral 1 with 85% yield, which is 21% more than the value obtained with ADH-T. This is due to the different reaction rates of monoreduction (1→2) and consecutive reduction (2→3) of the respective biocatalysts. In order to optimise the performance of the whole-cell-bioreduction 1→2 with S. cerevisiae, the system was studied in detail, revealing interactions between cell-physiology and xenobiotic substrate and by-products, respectively. This study compares the whole-cell biocatalytic route with the enzymatic route to enantiopure (S)-2 and investigates factors determining performance and outcome of the bioreductions.
    为了提高双功能手性结构单元 (5S)-hydroxy-2-hexanone ((S)-2)的可及性,我们研究了生物催化方法。因此,以 2,5-己二酮 (1) 为起点的 (S)-2 新合成路线被开发出来,其生产具有很高的对映选择性(ee >99%)。由于(S)-2 可以进一步还原生成 (2S,5S)-己二醇((2S,5S)-3),因此化学选择性是一个主要问题。在测试的生物催化剂中,全细胞系统 S. cerevisiae L13 的化学选择性超过了细菌脱氢酶 ADH-T。使用全细胞 S. cerevisiae L13 从原手性 1 中生成 (S)-2 的产率为 85%,比 ADH-T 高出 21%。这是因为两种生物催化剂的单还原(1→2)和连续还原(2→3)反应速率不同。为了优化全细胞生物还原 1→2 与 S. cerevisiae 的性能,对该系统进行了详细研究,分别揭示了细胞生理学与异生物底物和副产物之间的相互作用。本研究比较了全细胞生物催化途径和酶法途径制备对映体纯(S)-2 的方法,并研究了决定生物还原的性能和结果的因素。
  • SUGAR CHAIN ARRAY
    申请人:Sumitomo Bakelite Co., Ltd.
    公开号:EP2600152A1
    公开(公告)日:2013-06-05
    An object of the present invention is to provide a sugar chain array having a sugar chain immobilized thereon that is useful for detecting binding between an analyte and a sugar chain, and a sugar chain array having the sugar chain immobilized thereon that is capable of inhibiting non-specific adsorption and binding of an analyte without having to coat the sugar chain array with an adsorption inhibitor. A specific sugar chain is immobilized on the sugar chain array of the present invention, and is useful for detecting binding between the sugar chain and an analyte such as a pathogen of an infectious disease or an excretion thereof. In addition, in the sugar chain array of the present invention, when a base material is used that is coated with a polymeric compound having a unit having a primary amino group, a unit for maintaining hydrophilicity, and a unit having a hydrophobic group, the sugar chain is immobilized efficiently and non-specific adsorption and binding of the analyte can be effectively inhibited.
    本发明的目的是提供一种糖链阵列,其上固定有糖链,可用于检测分析物与糖链之间的结合;还提供一种糖链阵列,其上固定有糖链,可抑制分析物的非特异性吸附和结合,而无需在糖链阵列上涂布吸附抑制剂。本发明的糖链阵列上固定有特异性糖链,可用于检测糖链与分析物(如传染病病原体或其排泄物)之间的结合。此外,在本发明的糖链阵列中,当使用的基底材料涂覆有具有伯氨基的单元、保持亲水性的单元和具有疏水基团的单元的高分子化合物时,糖链被有效固定,分析物的非特异性吸附和结合可被有效抑制。
  • High-level production of (5S)-hydroxyhexane-2-one by two thermostable oxidoreductases in a whole-cell catalytic approach
    作者:Sylvia Diederichs、Katharina Linn、Janine Lückgen、Tobias Klement、Jan-Hendrik Grosch、Kohsuke Honda、Hisao Ohtake、Jochen Büchs
    DOI:10.1016/j.molcatb.2015.08.001
    日期:2015.11
    Enzymes derived from thermophilic organisms show a high thermal, chemical, and pH stability. Those enzymes can often withstand high substrate concentrations and are, therefore, competitive on an industrial scale. One example of a valuable building block in the synthesis of fine chemicals and pharmaceuticals is (5S)-hydroxyhexane-2-one. This hydroxyketone is so far only accessible in biocatalytic reductions starting at low substrate concentrations. To improve this biotransformation, two thermostable dehydrogenases for the production of the hydroxyketone with coupled cofactor regeneration were co-expressed in Escherichia coli and applied in a whole-cell catalytic approach. A putative 3-hydroxybutyryl-CoA dehydrogenase (HBD) derived from Therm us thermophilus HB8 was identified as S-selective enzyme for reduction of 2,5-hexanedione to (5S)-hydroxyhexane-2-one. This enzyme is resistant to high concentrations of 2,5-hexanedione. In the biotransformations, initial substrate concentrations of up to 250 mM 2,5-hexanedione were shown to be converted by the catalyst. To our knowledge, optically pure (5S)-hydroyhexane-2-one at a final concentration of 169 +/- 13 mM has never been produced in a biocatalytic batch process before. This concentration corresponds to a space-time-yield of 3.9 g/L/h. The application of calcium carbonate as buffering compound was a key for the production of those high product titers. Therefore, the thermostable whole-cell catalyst investigated in this study is superior to published catalysts for the production of (5S)-hydroxyhexane-2-one. (C) 2015 Elsevier B.V. All rights reserved.
  • CARBOHYDRATE CONJUGATES AS DELIVERY AGENTS FOR OLIGONUCLEOTIDES
    申请人:MANOHARAN Muthiah
    公开号:US20120136042A1
    公开(公告)日:2012-05-31
    The present invention provides iRNA agents comprising at least one subunit of the formula (I): wherein: A and B are each independently for each occurrence O, N(R N ) or S; X and Y are each independently for each occurrence H, OH, a hydroxyl protecting group, a phosphate group, a phosphodiester group, an activated phosphate group, an activated phosphite group, a phosphoramidite, a solid support, —P(Z′)(Z″)O-nucleoside, —P(Z′)(Z″)O-oligonucleotide, a lipid, a PEG, a steroid, a lipophile, a polymer, —P(Z′)(Z″)O-Linker-OP(Z′″)(Z″″)O-oligonucleotide, a nucleotide, an oligonucleotide, —P(Z′)(Z″)-formula (I), —P(Z′)(Z″)— or -Linker-R; R is L G , -Linker-L G , or has the structure shown below: L G is independently for each occurrence a carbohydrate, e.g., monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, polysaccharide; R N is independently for each occurrence H, methyl, ethyl, propyl, isopropyl, butyl, or benzyl; and Z′, Z″, Z′″ and Z″″ are each independently for each occurrence O or S.
查看更多