The synthesized novel fluorinated compound (LJJ-10) induces death receptor- and mitochondria-dependent apoptotic cell death in the human osteogenic sarcoma U-2 OS cells
摘要:
We designed the 6-fluoro-2-(3-fluorophenyl)-4-substituted anilinoquinazoline derivatives as less toxic anti-cancer candidates. Our result demonstrated that LJJ-10 has greater cytotoxicity than that of the other compounds in human osteogenic sarcoma U-2 OS cells. LJJ-10-induced apoptosis was associated with enhancing ROS generation, DNA damage, and an increase of the protein levels of Fas, FasL, FADD, caspase-8, cytochrome c, Apaf-1, AIF, Endo G, caspase-9 and caspase-3 in U-2 OS cells. LJJ-10-triggered growth inhibition was significantly attenuated by N-acetylcysteine, cyclosporine A, anti-FasL monoclonal anti-body, and caspase-8, -9 and -3 specific inhibitors in U-2 OS cells. We suggest that LJJ-10-induced apoptotic cell death in U-2 OS cells through death receptor- and mitochondria-dependent apoptotic signaling pathways. (C) 2011 Elsevier Masson SAS. All rights reserved.
The synthesized novel fluorinated compound (LJJ-10) induces death receptor- and mitochondria-dependent apoptotic cell death in the human osteogenic sarcoma U-2 OS cells
摘要:
We designed the 6-fluoro-2-(3-fluorophenyl)-4-substituted anilinoquinazoline derivatives as less toxic anti-cancer candidates. Our result demonstrated that LJJ-10 has greater cytotoxicity than that of the other compounds in human osteogenic sarcoma U-2 OS cells. LJJ-10-induced apoptosis was associated with enhancing ROS generation, DNA damage, and an increase of the protein levels of Fas, FasL, FADD, caspase-8, cytochrome c, Apaf-1, AIF, Endo G, caspase-9 and caspase-3 in U-2 OS cells. LJJ-10-triggered growth inhibition was significantly attenuated by N-acetylcysteine, cyclosporine A, anti-FasL monoclonal anti-body, and caspase-8, -9 and -3 specific inhibitors in U-2 OS cells. We suggest that LJJ-10-induced apoptotic cell death in U-2 OS cells through death receptor- and mitochondria-dependent apoptotic signaling pathways. (C) 2011 Elsevier Masson SAS. All rights reserved.
Iridium-catalysed direct sulfamidation of quinazolinones
作者:Yadong Feng、Yudong Li、Yunliang Yu、Lianhui Wang、Xiuling Cui
DOI:10.1039/c8ra00524a
日期:——
An Ir-catalysed direct sulfamidation of quinazolinones has been achieved to construct a series of ortho-diamided quinazolinones in excellent yields, and nitrogen was released as the sole byproduct.
已实现对喹唑酮的直接磺胺化反应,以构建一系列产率极高的邻二酰胺基喹唑酮,并且氮作为唯一副产物释放。
Palladium(II) N^O Chelating Complexes Catalyzed One-Pot Approach for Synthesis of Quinazolin-4(3<i>H</i>)-ones via Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and 2-Aminobenzamide
A convenient protocol for the one-pot synthesis of quinazolin-4(3H)-ones usingpalladium(II) complexes via dehydrogenative coupling of readily available benzyl alcohols and 2-aminobenzamide has been described. New structurally related Pd(II) N^O chelating complexes of general configuration [Pd(L)Cl(PPh3)] (where L = dimethylamino benzoylhydrazone ligands) have been designed and synthesized. The formation
New Pincer type Pd(II) complex [Pd(NNO)(PPh3)] (1) prompted synthesis of quinazolinones via dehydrogenative coupling of readily accessible alcohols, and o-aminobenzamide is described. A diverse range of quinazolinones has been synthesized efficiently with good to excellent yields employing low catalyst loading (0.5 mol%) under the aerobic condition without any additives/oxidants. A plausible mechanism
Aerobic oxidative synthesis of quinazolinones and benzothiazoles in the presence of laccase/DDQ as a bioinspired cooperative catalytic system under mild conditions
study applied laccase/DDQ as a bioinspired cooperative catalyticsystem for the synthesis of quinazolinones (80–95% yield) and benzothiazoles (65–98% yield) using air or O2 as ideal oxidants in aqueous media at ambient temperature. The aerobicoxidative cyclization reactions occur in two steps: (i) chemical cyclization; (ii) chemoenzymatic oxidation. These methods are more environment-friendly, efficient
目前的研究将漆酶/DDQ 作为一种受生物启发的协同催化系统,在环境温度下使用空气或 O 2作为水介质中的理想氧化剂合成喹唑啉酮(80-95% 产率)和苯并噻唑(65-98% 产率)。好氧氧化环化反应分两个步骤进行: (i) 化学环化;(ii) 化学酶氧化。由于使用O 2作为氧化剂,漆酶作为生态友好的生物催化剂,水性介质作为溶剂,并且不含任何有毒的过渡金属和卤化物,这些方法比其他报道的方法更环保、高效、简单和实用。催化剂。因此,这些方法可以应用于制药和其他敏感的合成过程。
α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water
the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles from the reactions of α-keto acids with 2-aminobenzamides, benzene-1,2-diamines, 2-aminophenols, and 2-aminobenzenethiols, respectively, is described. The reactions were conducted under catalyst-free conditions, using water as the sole solvent with no additive required, and successfully applied to the synthesis of sildenafil