Dirhodium tetraacetate catalyzed carbon-hydrogen insertion reaction in N-substituted .alpha.-carbomethoxy-.alpha.-diazoacetanilides and structural analogs. Substituent and conformational effects
摘要:
A series of acyclic alpha-carbomethoxy-alpha-diazoacetanilides with different N-substituents, 5a-k, was prepared and the rhodium(II) acetate catalyzed reactions studied. It was found that the rhodium carbenoid reaction with these compounds occurred only at the N-substituent; when the N-substituent is a propargyl group, rhodium carbenoid addition to the triple bond is favored, resulting, ultimately, in the formation of a bicyclic furan derivative 8. With an N-(tert-butyloxycarbonyl)methyl substituent, interception of the rhodium carbenoid by the ester carbonyl oxygen occurred preferentially to give, eventually, 1,4-oxazine derivatives 9 and 9'. For N-alkyl substituents, rhodium carbenoid carbon-hydrogen (C-H) insertion into the alkyl group to give 2-azetidinone and/or 2-pyrrolidinone derivatives was observed. The chemoselectivity of the rhodium carbenoid C-H insertion can be altered by the use of the alpha-acetyl and alpha-phenylsulfonyl substituents. In these cases, exclusive C-H insertion at the N-aryl moiety resulted to give 2(3H)-indolinone products. However, the alpha-substituent effect on the chemoselectivity of the insertion reaction is easily overridden by conformational effects about the amide N-C(O) bond as revealed by the insertion reactions of the conformationally rigid compounds 20a-c. The alpha-substituent effects are reestablished when conformational rigidity is removed, as exemplified by the rhodium carbenoid insertion reactions of compounds 29a,b.
Quite a pair: The first organocatalytic directasymmetric reduction of unprotected 1H‐indoles to chiral indolines has been developed. The reaction proceeds through the generation of electrophilic indolenium ions by a Brønsted acid, and then chiral Lewisbase (1) mediated enantioselective hydride transfer with HSiCl3. A variety of chiral indolines were obtained with moderate to excellent enantioselectivity
Dirhodium tetraacetate catalyzed carbon-hydrogen insertion reaction in N-substituted .alpha.-carbomethoxy-.alpha.-diazoacetanilides and structural analogs. Substituent and conformational effects
作者:Andrew G. H. Wee、Baosheng Liu、Lin Zhang
DOI:10.1021/jo00042a018
日期:1992.7
A series of acyclic alpha-carbomethoxy-alpha-diazoacetanilides with different N-substituents, 5a-k, was prepared and the rhodium(II) acetate catalyzed reactions studied. It was found that the rhodium carbenoid reaction with these compounds occurred only at the N-substituent; when the N-substituent is a propargyl group, rhodium carbenoid addition to the triple bond is favored, resulting, ultimately, in the formation of a bicyclic furan derivative 8. With an N-(tert-butyloxycarbonyl)methyl substituent, interception of the rhodium carbenoid by the ester carbonyl oxygen occurred preferentially to give, eventually, 1,4-oxazine derivatives 9 and 9'. For N-alkyl substituents, rhodium carbenoid carbon-hydrogen (C-H) insertion into the alkyl group to give 2-azetidinone and/or 2-pyrrolidinone derivatives was observed. The chemoselectivity of the rhodium carbenoid C-H insertion can be altered by the use of the alpha-acetyl and alpha-phenylsulfonyl substituents. In these cases, exclusive C-H insertion at the N-aryl moiety resulted to give 2(3H)-indolinone products. However, the alpha-substituent effect on the chemoselectivity of the insertion reaction is easily overridden by conformational effects about the amide N-C(O) bond as revealed by the insertion reactions of the conformationally rigid compounds 20a-c. The alpha-substituent effects are reestablished when conformational rigidity is removed, as exemplified by the rhodium carbenoid insertion reactions of compounds 29a,b.
Stereoselective Synthesis of 2,3-Disubstituted Indoline Diastereoisomers by Chemoenzymatic Processes
structural motifs such as C-2 and C-3 substitutions (alkyl or aryl), cis/trans relative stereochemistry and functionalization of the aromatic ring (fluoro, methyl or methoxygroups) have been efficiently prepared through Fischerindolization and subsequent diastereoselective reduction of the unprotected indoles. Combination of Candida antarctica lipase type A and allyl 3-methoxyphenyl carbonate has been