... Using recently developed metabolic toxicity screening arrays and a biocolloid reactor-LC-MS/MS approach, both featuring films of DNA and human metabolic enzymes, we demonstrated the relatively low reactivity of metabolically activated benzo[ghi]perylene (B[ghi]P) toward DNA. Electro-optical toxicity screening arrays showed that B[ghi]P metabolites damage DNA at a 3-fold lower rate than benzo[a]pyrene (B[a]P), whose metabolites have a strong and well-understood propensity for DNA damage. Metabolic studies using magnetic bead biocolloid reactors coated with microsomal enzymes in 96-well plates showed that cyt P450s 1A1 and 1B1 provide high activity for B[ghi]P and B[a]P conversion. Consistent with published results, the major metabolism of B[ghi]P involved oxidations at 3,4 and 11,12 positions, leading to the formation of B[ghi]P 3,4-oxide and B[ghi]P 3,4,11,12-bisoxide. B[ghi]P 3,4-oxide was synthesized and reacted with deoxyadenosine at N6 and N7 positions and with deoxyguanosine at the N2 position. B[ghi]P 3,4-oxide is hydrolytically unstable and transforms into the 3,4-diol or converts to 3- or 4-hydroxy B[ghi]P. LC-MS/MS of reaction products from the magnetic biocolloid reactor particles coated with DNA and human enzymes revealed for the first time that a major DNA adduct results from the reaction between B[ghi]P 3,4,11,12-bisoxide and deoxyguanosine. Results also demonstrated 5-fold lower formation rates of the major DNA adduct for B[ghi]P metabolites compared to B[a]P. Overall, results from both the electro-optical array and biocolloid reactor-LC-MS/MS consistently suggest a lower human genotoxicity profile of B[ghi]P than B[a]P.
Carcinogenic polycyclic aromatic hydrocarbons (PAH), e.g., benzo[a]pyrene (BaP), possess a bay region comprising an ortho-fused benzene ring. Benzo[ghi]perylene (BghiP) represents the group of PAHs lacking such a "classic" bay region and hence cannot be metabolically converted like BaP to bay region dihydrodiol epoxides considered as ultimate mutagenic and carcinogenic metabolites of PAH. BghiP exhibits bacterial mutagenicity in strains TA98 (1.3 his(+)-revertant colonies/nmol) and TA100 (4.3 his(+)-revertant colonies/nmol) of Salmonella typhimurium after metabolic activation by the postmitochondrial hepatic fraction of CD rats treated with 3-methylcholanthrene. Inhibition of microsomal epoxide hydrolase (mEH) with 1,1,1-trichloro-2-propene oxide raised the bacterial mutagenicity of BghiP in TA98 almost 4-fold indicating arene oxides as ultimate mutagens. To confirm this assumption, the biotransformation of BghiP was elucidated. Incubation of BghiP with liver microsomes of CD rats treated with Aroclor 1254 yielded 17 ethyl acetate extractable metabolic products. Twelve metabolites were identified by a combination of chromatographic, spectroscopic, and biochemical methods. The microsomal biotransformation of BghiP proceeds by two pathways: Pathway I starts with the monooxygenase attack at the 7-position leading to the 7-phenol, which is transformed to the 7,8- and 7,10-diphenols followed by oxidation to the 7,8- and 7,10-quinones. On pathway II, the K regions of BghiP are successively converted to arene oxides yielding the indirectly identified 3,4-oxide and the 3,4,11,12-bisoxides. Enzymatic hydrolysis of the 3,4-oxide leads to the trans-3,4-dihydrodiol, which is oxidized to the 3,4-quinone. Similarly, the trans-3,4-trans-11,12-bisdihydrodiols and the trans-3,4-dihydrodiol 11,12-quinone are generated from the 3,4,11,12-bisoxides. The trans-3,4-dihydrodiol and the trans-3,4-trans-11,12-bisdihydrodiols are preferentially formed as R,R and R,R,R,R enantiomers, respectively. The intrinsic bacterial mutagenicity of the 3,4,11,12-bisoxides is rather low and hardly explains the strong increase in bacterial mutagenicity of BghiP after inhibition of mEH. Thus, we believe that the 3,4-oxide plays a more important role as the ultimate mutagenic metabolite of BghiP.
来源:Hazardous Substances Data Bank (HSDB)
代谢
在用未经处理的大鼠肝微粒体进行孵化后,未发现来自苯并(ghi)芘的代谢物。
After incubation with liver microsomes from nonpretreated rats, no metabolites were found from benzo(ghi)perylene.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. ... 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer. ...
PAH metabolism occurs in all tissues, usually by cytochrome P-450 and its associated enzymes. PAHs are metabolized into reactive intermediates, which include epoxide intermediates, dihydrodiols, phenols, quinones, and their various combinations. The phenols, quinones, and dihydrodiols can all be conjugated to glucuronides and sulfate esters; the quinones also form glutathione conjugates. (L10)
IDENTIFICATION AND USE: Benzo(ghi)perylene (BghiP) is a solid. It is used in small amounts for scientific research. Polycyclic aromatic hydrocarbons (PAHs) are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. HUMAN EXPOSURE AND TOXICITY: In human cells BghiP can activate the overexpression of aryl hydrocarbon receptor (AhR) and cytochrome CYP4B1, and the effects are abated by the AhR receptor antagonist. BghiP represents the group of PAHs lacking a "classic" bay region and hence it cannot be metabolically converted to bay region dihydrodiol epoxides considered as ultimate mutagenic and carcinogenic metabolites of PAH. Experimental results demonstrate lower human genotoxicity profile of B[ghi]P than for benzo[a]pyrene. ANIMAL STUDIES: Benzo(ghi)perylene showed no tumorigenic effect in the respiratory tracts of rats when given at doses of 5 mg. BghiP was analyzed for induction effect on skin and liver aryl hydrocarbon hydroxylase and 7-ethoxycoumarin o-deethylase activities in neonatal rats. A single topical application caused induction of liver enzymes without producing effects on skin enzymes. BghiP exhibits bacterial mutagenicity in strains TA98 and TA100 of Salmonella typhimurium after metabolic activation. ECOTOXICITY STUDIES: BghiP was responsible for retardation of growth and increases in adrenal and nasal gland weight in nestling herring gulls (Larus argentatus).
The ability of PAH's to bind to blood proteins such as albumin allows them to be transported throughout the body. Many PAH's induce the expression of cytochrome P450 enzymes, especially CYP1A1, CYP1A2, and CYP1B1, by binding to the aryl hydrocarbon receptor or glycine N-methyltransferase protein. These enzymes metabolize PAH's into their toxic intermediates. The reactive metabolites of PAHs (epoxide intermediates, dihydrodiols, phenols, quinones, and their various combinations) covalently bind to DNA and other cellular macromolecules, initiating mutagenesis and carcinogenesis. (L10, L23, A27, A32)
CLASSIFICATION: D; not classifiable as to human carcinogenicity. BASIS FOR CLASSIFICATION: Based on no human data and inadequate animal data from lung implant, skin-painting and subcutaneous injection bioassays. HUMAN CARCINOGENICITY DATA: None. ANIMAL CARCINOGENICITY DATA: Inadequate.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
总评:第3组:该物质对人类致癌性无法分类。
OVERALL EVALUATION: Group 3: The agent is not classifiable as to its carcinogenicity to humans.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌物分类
国际癌症研究机构致癌物:苯并[ghi]苝
IARC Carcinogenic Agent:Benzo[ghi]perylene
来源:International Agency for Research on Cancer (IARC)
An analytical procedure is described which includes extraction of polycyclic aromatic hydrocarbons (PAH), including benzo(ghi)perylene, and polycyclic aromatic hydrocarbons metabolites from urine, reduction of metabolites to the original polycyclic aromatic hydrocarbons and subsequent analysis by HPLC. The mean value of the sum of the 11 polycyclic aromatic hydrocarbons in non smoker's urine was 1.1 ug/mmol creatinine. The sum of polycyclic aromatic hydrocarbons in smoker's urine was significantly higher. Increased levels of PAH were found in the urine of aluminum reduction workers.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
芘(ghi)被胃肠道和肺部迅速吸收。一般来说,多环芳烃的脂溶性很高,能够穿越上皮细胞膜。
... Benzo(ghi)perylene is absorbed readily from the gastrointestinal tract and lung. In general, polycyclic aromatic hydrocarbons are highly lipid soluble and can pass across epithelial membranes.
De Novo Synthesis Mechanism of Polychlorinated Dibenzofurans from Polycyclic Aromatic Hydrocarbons and the Characteristic Isomers of Polychlorinated Naphthalenes
摘要:
Polychlorinated dibenzofurans (PCDFs) and polychlorinated naphthalenes (PCNs) are known to be emitted from municipal waste incinerators (MWIs) with polychlorinated dibenzo-p-dioxins (PCDDs). Two formation paths for PCDD/Fs could mainly work, which are condensation of the precursors such as chlorophenols and "de novo" formation from carbon. However the correlation between the chemical structure of carbon and the resulting PCDD/Fs still remains unknown. In this study, the PCDD/Fs formation from polycyclic aromatic hydrocarbons (PAHs) and CuCl was examined at 400 under 10% O-2. Coronene among the PAHs characteristically gave 1,2,8,9-T4CDF and the derivatives. These isomers clearly indicate that chlorination causes the cleavage of the C-C bonds in a coronene molecule and also that oxygen is easily incorporated from its outside to form 1,2,8,9-T4CDF. The symmetrical preformed structures in the coronene molecule enabled to amplify the de novo formation of the isomer. PCNs are also formed directly from these PAHs. Since there have been few reports on the formation mechanism of PCNs, this study will be a first step to know the whole formation paths. We also define the de novo synthesis as the breakdown reaction of a carbon matrix, since the word has been used without the precise definition.
Expeditious synthesis of helicenes using an improved protocol of photocyclodehydrogenation of stilbenes
作者:Harish R. Talele、Anju R. Chaudhary、Parthiv R. Patel、Ashutosh V. Bedekar
DOI:10.3998/ark.5550190.0012.902
日期:——
developed for photodehydrocyclization of stilbenes for the synthesis of phenanthrenes and helicenes. This procedure involves the use of THF as a scavenger of hydriodicacid produced during iodine mediated photodehydrocyclization. The use of THF is advantageous due to its higher boiling point, lower cost and easy availability as compared to propylene oxide. The method is applied to synthesize a number
申请人:IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) 한양대학교 산학협력단(220040114276) BRN ▼206-82-07306
公开号:KR20180043221A
公开(公告)日:2018-04-27
3차원 유기 구조체를 제공한다. 상기 유기 구조체는 비공유 결합에 의해 자기조립된 다수 개의 유기 분자들을 포함한다. 각 유기 분자는 방향족 고리와 상기 방향족 고리의 치환가능한 위치들 중 바로 인접한 위치들에 각각 결합된 치환기들의 제1 쌍과 나머지 치환가능한 위치들 중 바로 인접한 위치들에 각각 결합된 치환기들의 제2 쌍을 구비한다. 상기 유기 분자들은 상기 치환기들의 제1 쌍과 제2 쌍 사이의 반 데르 발스(Van Der Waals) 상호작용, 런던 분산력(London dispersion interaction) 또는 수소 결합(hydrogen bonding)과 방향족 고리들 사이의 파이-파이 상호작용에 의해 자기 조립된다.
ORGANIC COMPOUND, THREE-DIMENSIONAL ORGANIC FRAMEWORK FORMED BY USING ORGANIC COMPOUND, SEPARATION SIEVE AND OPTICAL LAYER, WHICH COMPRISE ORGANIC FRAMEWORK, AND OPTICAL DEVICE COMPRISING OPTICAL LAYER AS OPTICAL AMPLIFICATION LAYER
申请人:INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY
公开号:US20190031586A1
公开(公告)日:2019-01-31
An organic compound, a three-dimensional organic structure formed by using the organic compound, a separation sieve and an optical layer having the organic structure, and an optical device having the optical layer as an optical amplification layer are provided. The organic structure includes a plurality of organic molecules self-assembled by non-covalent bonding. Each of the unit organic molecules has an aromatic ring, a first pair of substituents being connected to immediately adjacent positions of substitutable positions of the aromatic ring, and a second pair of substituents being connected to immediately adjacent positions of remaining substitutable positions of the aromatic ring. The unit organic molecules are self-assembled by van der Waals interaction, London dispersion interaction or hydrogen bonding between the first and the second pairs of the substituents and by pi-pi interactions between the aromatic rings.
Emission Factors and Importance of PCDD/Fs, PCBs, PCNs, PAHs and PM<sub>10</sub> from the Domestic Burning of Coal and Wood in the U.K.
作者:Robert G. M. Lee、Peter Coleman、Joanne L. Jones、Kevin C. Jones、Rainer Lohmann
DOI:10.1021/es048745i
日期:2005.3.1
fuels. However, their combined emissions from the domestic burning of coal and wood would contribute only a few percent to annual U.K.emission estimates. Emissions of PAHs and PM10 were major contributors to U.K. national emission inventories. Major emissions were found from the domestic burning for Cl1,2,3DFs, while the contribution of PCDD/F-sigmaTEQ to total U.K.emissions was minor.
本文介绍了当煤和木材经过受控燃烧实验时针对一系列持久性有机污染物(POPs)得出的排放因子(EFs),旨在模拟空间供暖的家庭燃烧。排放了各种各样的持久性有机污染物,煤炭的排放量高于木材的排放量。对于颗粒物,PM10(大约10 g / kg燃料)和多环芳烃(对于sigmaPAHs大约100 mg / kg燃料)获得了最高的EF。对于氯化物,多氯联苯(PCB)的EF最高,而多氯萘(PCN),二苯并-对-二恶英(PCDD)和二苯并呋喃(PCDF)的丰度较低。对于sigmaPCB,EF大约为1000 ng / kg燃料,对于sigmaPCNs大约为100s ng / kg燃料,对于sigmaPCDD / Fs大约为100 ng / kg燃料。该研究证实,一氯化至三氯化二苯并呋喃Cl1,2,3DFs是低温燃烧过程(如煤炭和木材的国内燃烧)的有力指标。结论是,在固体燃料燃烧期间通常形成许多PCB和PC
Synthesis of Derivatives of Phenanthrene and Helicene by Improved Procedures of Photocyclization of Stilbenes
作者:Harish R. Talele、Monik J. Gohil、Ashutosh V. Bedekar
DOI:10.1246/bcsj.82.1182
日期:2009.9.15
An improved method has been developed for photocyclization of stilbene to construct phenanthrenes and benzo[c]phenanthrenes. This reaction is promoted by iodine while tetrahydrofuran is used as an ...