We report the synthesis and structure activity relationship (SAR) analysis of a series of hybrid compounds containing a squaric moiety conjugated with heterocyclic moieties from well-known antimalarials. This novel series of compounds presents improved antiplasmodial activity compared with the squaric derivatives described in our previous work. Three compounds, 8b (IC50 = 99 nM), 8c (IC50 = 95 nM), and 8d (IC50 = 105 nM) had greater in vitro potency than chloroquine 1 (IC50 = 140 nM) against chloroquine resistant Plasmodium falciparum. In addition, they were noncytotoxic against NIH 3T3 and Hek 293T cells. (C) 2013 Elsevier Masson SAS. All rights reserved.
作者:Carlos J.A. Ribeiro、S. Praveen Kumar、Jiri Gut、Lídia M. Gonçalves、Philip J. Rosenthal、Rui Moreira、Maria M.M. Santos
DOI:10.1016/j.ejmech.2013.08.037
日期:2013.11
We report the synthesis and structure activity relationship (SAR) analysis of a series of hybrid compounds containing a squaric moiety conjugated with heterocyclic moieties from well-known antimalarials. This novel series of compounds presents improved antiplasmodial activity compared with the squaric derivatives described in our previous work. Three compounds, 8b (IC50 = 99 nM), 8c (IC50 = 95 nM), and 8d (IC50 = 105 nM) had greater in vitro potency than chloroquine 1 (IC50 = 140 nM) against chloroquine resistant Plasmodium falciparum. In addition, they were noncytotoxic against NIH 3T3 and Hek 293T cells. (C) 2013 Elsevier Masson SAS. All rights reserved.