AbstractThe human immunodeficiency virus type 1 (HIV‐1) Gag protein is responsible for facilitating HIV‐1 virion assembly and budding. Our study demonstrates that cardiolipin (CL), a component found in the inner mitochondrial membrane, exhibits the highest binding affinity to the N‐terminal MA domain of the HIV‐1 Gag protein within the lipid group of host cells. To assess this binding interaction, we synthesized short acyl chain derivatives of CL and employed surface plasmon resonance (SPR) analysis to determine the dissociation constants (Kd) for CL and the MA domain. Simultaneously, we examined the Kd of D‐myo‐phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2) derivatives, known to play a crucial role in virion formation. Among all the derivatives, Tetra‐C7‐CL exhibited the lowest Kd value (Kd = 30.8 ± 6.9 μM) for MA binding on the CL analog‐immobilized sensorchip, indicating a higher affinity. Similarly, the Kd value of Di‐C7‐PIP2 (Kd = 36.6 ± 4.7 μM) was the lowest on the PI(4,5)P2 analog‐immobilized sensorchip. Thus, Tetra‐C7‐CL binds to the MA domain using a distinct binding mode while displaying a comparable binding affinity to Di‐C7‐PIP2. This discovery holds significant implications for comprehending the virological importance of CL–MA domain binding, such as its subcellular distribution, including mitochondrial translocation, and involvement in viral particle formation in concert with PI(4,5)P2. Furthermore, this study has the potential to contribute to the development of drugs in the future.
摘要 人类免疫缺陷病毒 1 型(HIV-1)Gag 蛋白负责促进 HIV-1 病毒的组装和出芽。我们的研究表明,线粒体内膜中的一种成分--心磷脂(CL)与宿主细胞脂质组中 HIV-1 Gag 蛋白 N 端 MA 结构域的结合亲和力最高。为了评估这种结合相互作用,我们合成了 CL 的短酰基链衍生物,并利用表面等离子体共振(SPR)分析确定了 CL 与 MA 结构域的解离常数(Kd)。同时,我们还检测了D-肌磷脂酰肌醇-4,5-二磷酸(PI(4,5)P2)衍生物的Kd,众所周知,PI(4,5)P2在病毒形成过程中起着至关重要的作用。在所有衍生物中,Tetra-C7-CL 与 MA 在 CL 类似物固定的传感器芯片上结合的 Kd 值最低(Kd = 30.8 ± 6.9 μM),表明其亲和力较高。同样,在 PI(4,5)P2 类似物固定的传感器芯片上,Di-C7-PIP2 的 Kd 值(Kd = 36.6 ± 4.7 μM)最低。因此,Tetra-C7-CL 采用一种独特的结合模式与 MA 结构域结合,同时显示出与 Di-C7-PIP2 相当的结合亲和力。这一发现对理解 CL-MA 结构域结合在病毒学上的重要性具有重要意义,例如它的亚细胞分布,包括线粒体转运,以及与 PI(4,5)P2 共同参与病毒颗粒的形成。此外,这项研究还有可能促进未来药物的开发。