摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

异氟醚 | 26675-46-7

中文名称
异氟醚
中文别名
2-氯-2-(二氟甲氧基)-1,1,1-三氟乙烷;活宁液;1-氯-2,2,2-三氟乙基二氟甲基醚;1-氯-2,2,2-三氟乙基二氟甲基酯;异氟烷;异五氟甲乙醚福仑;活宁
英文名称
isoflurane
英文别名
2-chloro-2-(difluoromethoxy)-1,1,1-trifluoroethane
异氟醚化学式
CAS
26675-46-7
化学式
C3H2ClF5O
mdl
MFCD00066609
分子量
184.493
InChiKey
PIWKPBJCKXDKJR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    48.5°C
  • 沸点:
    48.5 °C
  • 密度:
    1.510 g/mL at 25 °C
  • 闪点:
    48-49°C
  • 溶解度:
    几乎不溶于水,与乙醇和三氯乙烯混溶。
  • 物理描述:
    Liquid
  • 颜色/状态:
    Clear, colorless liquid
  • 气味:
    Slight odor
  • 蒸汽压力:
    330 mm Hg at 25 °C
  • 亨利常数:
    0.03 atm-m3/mole
  • 大气OH速率常数:
    1.51e-14 cm3/molecule*sec
  • 稳定性/保质期:
    如果按照规定使用和储存,则不会发生分解。请避免接触氧化物。
  • 分解:
    When heated to decomposition it emits toxic fumes of /fluorine and chlorine/.
  • 折光率:
    Index of refraction: 1.3002 at 20 °C/D
  • 保留指数:
    454;454

计算性质

  • 辛醇/水分配系数(LogP):
    2.1
  • 重原子数:
    10
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    6

ADMET

代谢
最小值
Minimal
来源:DrugBank
代谢
氟化醚挥发性麻醉剂对肾脏和肝脏的毒性是由生物转化为有毒代谢物所引起的。代谢也显著地影响了某些挥发性麻醉剂的消除药代动力学。尽管有无数的研究探索了动物麻醉剂的代谢,但关于人类挥发性麻醉剂代谢的比较速率或负责去氟化的酶的身份的信息却很少。这项调查的第一个目的是比较人类肝脏微粒体中氟化醚麻醉剂的代谢。第二个目的是测试细胞色素P450 2E1是人类挥发性麻醉剂去氟化的特定P450同种型的假设。从人类肝脏中制备微粒体。通过氟化物产生量来测量微粒体培养中的麻醉剂代谢。评估P450 2E1在麻醉剂去氟化中的作用涉及三种方法:对一系列12个人类肝脏,将微粒体去氟化速率与微粒体P450 2E1含量(通过西方印迹分析测量)进行相关性分析,将去氟化速率与使用标记底物(对硝基酚羟基化和氯唑松6-羟基化)的微粒体P450 2E1催化活性进行相关性分析,以及通过P450同种型选择性抑制剂进行化学抑制。在饱和底物浓度下,通过氟化物产生量评估的麻醉剂代谢的顺序是甲氧氟烷 > 七氟烷 > 恩氟烷 > 异氟烷 > 地氟烷 > 0。七氟烷和甲氧氟烷去氟化与P450 2E1抗原含量有显著线性相关性(分别为r = 0.98和r = 0.72),但与P450 1A2或P450 3A3/4无相关性。将麻醉剂去氟化与对硝基酚或氯唑松羟基化进行比较,显示七氟烷(r = 0.93,r = 0.95)和甲氧氟烷(r = 0.78,r = 0.66)有显著相关性。七氟烷去氟化也与已知的由人类P450 2E1代谢的恩氟烷的去氟化有高度相关性(r = 0.93)。二乙基二硫代氨基甲酸盐,一种选择性的P450 2E1抑制剂,产生了浓度依赖性的七氟烷、甲氧氟烷和异氟烷去氟化的抑制。没有其他同种型选择性抑制剂减少七氟烷的去氟化,而甲氧氟烷去氟化被选择性P450抑制剂呋拉非林(P450 1A2)、磺胺苯唑(P450 2C9/10)和奎尼丁(P450 2D6)抑制,但程度远低于二乙基二硫代氨基甲酸盐。这些结果表明,细胞色素P450 2E1是人类肝脏微粒体中催化七氟烷去氟化的主要,如果不是唯一的酶。P450 2E1是甲氧氟烷代谢的主要,但不是唯一的酶,甲氧氟烷的代谢似乎也被P450s 1A2、2C9/10和2D6催化。数据还表明,P450 2E1负责异氟烷代谢的很大一部分。确定P450 2E1是人类主要麻醉剂代谢酶,为临床氟化醚麻醉剂代谢和毒性的机制理解提供了依据。
Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0.66). Sevoflurane defluorination was also highly correlated with that of enflurane (r = 0.93), which is known to be metabolized by human P450 2E1. Diethyldithiocarbamate, a selective inhibitor of P450 2E1, produced a concentration-dependent inhibition of sevoflurane, methoxyflurane, and isoflurane defluorination. No other isoform-selective inhibitor diminished the defluorination of sevoflurane, whereas methoxyflurane defluorination was inhibited by the selective P450 inhibitors furafylline (P450 1A2), sulfaphenazole (P450 2C9/10), and quinidine (P450 2D6) but to a much lesser extent than by diethyldithiocarbamate. These results demonstrate that cytochrome P450 2E1 is the principal, if not sole human liver microsomal enzyme catalyzing the defluorination of sevoflurane. P450 2E1 is the principal, but not exclusive enzyme responsible for the metabolism of methoxyflurane, which also appears to be catalyzed by P450s 1A2, 2C9/10, and 2D6. The data also suggest that P450 2E1 is responsible for a significant fraction of isoflurane metabolism. Identification of P450 2E1 as the major anesthetic metabolizing enzyme in humans provides a mechanistic understanding of clinical fluorinated ether anesthetic metabolism and toxicity.
来源:Hazardous Substances Data Bank (HSDB)
代谢
异氟醚在人体内经历最小的生物转化。
Isoflurane undergoes minimal biotransformation in man.
来源:Hazardous Substances Data Bank (HSDB)
代谢
氟化醚挥发性麻醉剂对肾脏和肝脏的毒性是由生物转化为有毒代谢物所引起的。代谢也显著地影响了某些挥发性麻醉剂的消除药代动力学。尽管有无数的研究探索了动物麻醉剂的代谢,但关于人类挥发性麻醉剂代谢的比较速率或负责去氟化的酶的身份的信息却很少。本调查的第一个目的是比较人类肝脏微粒体中氟化醚麻醉剂的代谢。第二个目的是测试细胞色素P450 2E1是人类挥发性麻醉剂去氟化的特定P450同种型的假设。从人类肝脏中制备微粒体。通过氟化物的产生来测量微粒体培养中的麻醉剂代谢。评估P450 2E1在麻醉剂去氟化中作用的方法包括三种:对于12个人类肝脏的一系列,将微粒体去氟化速率与微粒体P450 2E1含量(通过西方印迹分析测量)相关联,将去氟化速率与使用标记底物(对硝基酚羟基化和氯唑松6-羟基化)的微粒体P450 2E1催化活性相关联,以及通过P450同种型选择性抑制剂进行化学抑制。在饱和底物浓度下,通过氟化物产生评估的麻醉剂代谢的顺序是甲氧氟烷 > 七氟烷 > 恩氟烷 > 异氟烷 > 地氟烷 > 0。七氟烷和甲氧氟烷去氟化与P450 2E1抗原含量显著线性相关(分别为r = 0.98和r = 0.72),但与P450 1A2或P450 3A3/4无关。将麻醉剂去氟化与对硝基酚或氯唑松羟基化进行比较,显示七氟烷(r = 0.93,r = 0.95)和甲氧氟烷(r = 0.78,r = 0.66)有显著相关性。七氟烷去氟化也与已知的由人类P450 2E1代谢的恩氟烷的去氟化高度相关(r = 0.93)。二乙基二硫代氨基甲酸盐,一种选择性P450 2E1抑制剂,导致七氟烷、甲氧氟烷和异氟烷去氟化的浓度依赖性抑制。没有其他同种型选择性抑制剂降低七氟烷的去氟化,而甲氧氟烷去氟化被选择性P450抑制剂呋拉非林(P450 1A2)、磺胺苯唑(P450 2C9/10)和奎尼丁(P450 2D6)抑制,但程度远低于二乙基二硫代氨基甲酸盐。这些结果表明,细胞色素P450 2E1是人类肝脏微粒体中催化七氟烷去氟化的主要,如果不是唯一的酶。P450 2E1是甲氧氟烷代谢的主要,但不是唯一的酶,甲氧氟烷的代谢似乎也可以由P450s 1A2、2C9/10和2D6催化。数据还表明,P450 2E1负责异氟烷代谢的很大一部分。确定P450 2E1是人类主要的麻醉剂代谢酶,为临床氟化醚麻醉剂代谢和毒性提供了机制上的理解。
Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0.66). Sevoflurane defluorination was also highly correlated with that of enflurane (r = 0.93), which is known to be metabolized by human P450 2E1. Diethyldithiocarbamate, a selective inhibitor of P450 2E1, produced a concentration-dependent inhibition of sevoflurane, methoxyflurane, and isoflurane defluorination. No other isoform-selective inhibitor diminished the defluorination of sevoflurane, whereas methoxyflurane defluorination was inhibited by the selective P450 inhibitors furafylline (P450 1A2), sulfaphenazole (P450 2C9/10), and quinidine (P450 2D6) but to a much lesser extent than by diethyldithiocarbamate. These results demonstrate that cytochrome P450 2E1 is the principal, if not sole human liver microsomal enzyme catalyzing the defluorination of sevoflurane. P450 2E1 is the principal, but not exclusive enzyme responsible for the metabolism of methoxyflurane, which also appears to be catalyzed by P450s 1A2, 2C9/10, and 2D6. The data also suggest that P450 2E1 is responsible for a significant fraction of isoflurane metabolism. Identification of P450 2E1 as the major anesthetic metabolizing enzyme in humans provides a mechanistic understanding of clinical fluorinated ether anesthetic metabolism and toxicity.
来源:Hazardous Substances Data Bank (HSDB)
代谢
最小值
Minimal
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
异氟醚通过减少间隙连接通道的开放时间并增加间隙连接通道的关闭时间,从而引起间隙连接电导的降低。异氟醚还通过增加脂质膜的流动性,激活肌浆网中的钙依赖性ATP酶。异氟醚还似乎能与ATP合酶的D亚单位和NADH脱氢酶结合。异氟醚还能与GABA受体、大电导钙激活钾通道、谷氨酸受体和甘氨酸受体结合。
Isoflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Isoflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. Also appears to bind the D subunit of ATP synthase and NADH dehydogenase. Isoflurane also binds to the GABA receptor, the large conductance Ca<sup>2+</sup> activated potassium channel, the glutamate receptor and the glycine receptor.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 肝毒性
预期的,系列血液测试经常显示在重大手术和卤素麻醉剂使用后1到2周内血清转氨酶水平有轻微的暂时性升高。然而,ALT水平超过正常上限10倍的情况非常不寻常,这表明有显著的肝毒性。临床上明显的、由异氟醚引起的严重肝损伤非常罕见,只有孤立的病例报告和小型病例系列发表过。损伤表现为血清转氨酶水平的急性升高(5到50倍)以及在手术后的2到21天内出现黄疸。碱性磷酸酶和γ-谷氨酰转肽酶水平通常只有轻微升高。黄疸通常在发热一到两天前出现,可能伴有皮疹和嗜酸性粒细胞增多。急性肝损伤可能是自限性的,在4到8周内解决,但可能是严重的,并伴有急性肝衰竭。一个强烈的风险因素是以前接触过任何卤素麻醉剂,特别是有卤烷肝炎病史或在用这些麻醉剂麻醉后出现不明原因的发热和皮疹。手术后和麻醉后急性肝损伤的鉴别诊断有时是困难的,与异氟醚肝炎相似的临床表现可能由休克或缺血、其他特异质药物引起的肝损伤以及急性病毒性或疱疹性肝炎引起。
Prospective, serial blood testing often demonstrates minor transient elevations in serum aminotransferase levels in the 1 to 2 weeks after major surgery and halogenated anesthetic agents. Appearance of ALT levels above 10 times the upper limit of normal, however, is distinctly unusual and points to significant hepatotoxicity. Clinically apparent, severe hepatic injury from isoflurane is very rare, only isolated case reports and small case series having been published. The injury is marked by acute elevations in serum aminotransferase levels (5- to 50-fold) and appearance of jaundice within 2 to 21 days of surgery. There are usually minimal increases in alkaline phosphatase and gammaglutamyl transpeptidase levels. Jaundice is usually preceded by a day or two of fever and may be accompanied by rash and eosinophilia. The acute liver injury may be self-limited and resolve within 4 to 8 weeks, but can be severe and associated with acute liver failure. A strong risk factor is previous exposure to any of the halogenated anesthetics and particularly a history of halothane hepatitis or unexplained fever and rash after anesthesia with one of these agents. The differential diagnosis of acute liver injury after surgery and anesthesia is sometimes difficult, and a clinical picture similar to isoflurane hepatitis can be caused by shock or ischemia, other idiosyncratic forms of drug induced liver injury and acute viral or herpes hepatitis.
来源:LiverTox
毒理性
  • 致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
可能导致心律失常和死亡(罕见)。在易感个体中,异氟醚麻醉可能触发骨骼肌高代谢状态,导致高氧需求,并引发称为恶性高热的临床综合征。该综合征包括非特异性特征,如肌肉僵直、心动过速、呼吸急促、发绀、心律失常和不稳定的血压。(L1471)
May lead to cardiac arrhythmias and death (Rarely). In susceptible individuals, Isoflurane anesthesia may trigger a skeletal muscle hypermetabolic state leading to high oxygen demand and the clinical syndrome known as malignant hyperthermia. The syndrome includes nonspecific features such as muscle rigidity, tachycardia, tachypnea, cyanosis, arrhythmias, and unstable blood pressure.(L1471)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 在妊娠和哺乳期间的影响
◉ 母乳喂养期间使用概述:目前没有关于母乳喂养期间使用异氟醚的已发表经验。由于异氟醚在母亲体内的血清半衰期短,且药物预期不会被婴儿吸收,因此不需要等待期或弃用母乳。只要母亲从全身麻醉中恢复到足以哺乳的程度,就可以恢复母乳喂养。当手术中使用多种麻醉剂组合时,请遵循手术期间使用的最具问题性药物的建议。在一项研究中,诱导全身麻醉前进行母乳喂养的母亲与那些被禁止哺乳或非哺乳妇女相比,七氟醚和丙泊酚的需求量有所减少。其他麻醉剂的需求量可能也会受到类似影响。 ◉ 对哺乳婴儿的影响:截至修订日期,没有找到相关的已发表信息。 ◉ 对泌乳和母乳的影响:一项随机但非盲的研究比较了接受剖宫产手术的妇女使用硬脊膜外麻醉(布比卡因)与使用静脉注射硫喷妥钠4 mg/kg和琥珀胆碱1.5 mg/kg诱导,随后使用笑气和异氟醚的全身麻醉。硬脊膜外麻醉组第一次哺乳的时间显著短于全身麻醉组(107分钟对228分钟)。这种差异可能是由于麻醉对婴儿的影响,因为全身麻醉组婴儿的Apgar评分和神经适应性评分显著较低。 一项随机研究比较了使用全身麻醉、脊髓麻醉或硬脊膜外麻醉进行剖宫产与正常阴道分娩对血清催乳素和催产素以及开始泌乳时间的影响。全身麻醉使用丙泊酚2 mg/kg和罗库溴铵0.6 mg/kg进行诱导,随后根据需要使用七氟醚和罗库溴铵0.15 mg/kg。分娩后,所有组的患者均接受1 L生理盐水中含有30国际单位催产素的输注,如果她们血压不高,则给予0.2 mg甲基麦角新碱。全身麻醉组在分娩后给予芬太尼1至1.5 mcg/kg。全身麻醉组(n = 21)的术后催乳素水平较高,平均开始泌乳的时间(25小时)长于其他组(10.8至11.8小时)。未用药阴道分娩组产后的催产素水平高于全身麻醉和脊髓麻醉组。 一项土耳其医院的回顾性研究比较了接受选择性剖宫产手术的妇女,一组接受布比卡因脊髓麻醉(n = 170),另一组接受全身麻醉(n = 78),诱导用丙泊酚,维持用七氟醚,分娩后用芬太尼。两组在产后1小时和24小时的母乳喂养率没有差异。然而,在产后6个月,全身麻醉组仍有67%的妇女在哺乳,而脊髓麻醉组为81%,这是一个统计学上的显著差异。
◉ Summary of Use during Lactation:There is no published experience with isoflurane during breastfeeding. Because the serum half-life of isoflurane in the mother is short and the drug is not expected to be absorbed by the infant, no waiting period or discarding of milk is required. Breastfeeding can be resumed as soon as the mother has recovered sufficiently from general anesthesia to nurse. When a combination of anesthetic agents is used for a procedure, follow the recommendations for the most problematic medication used during the procedure. In one study, breastfeeding before general anesthesia induction reduced requirements of sevoflurane and propofol compared to those of nursing mothers whose breastfeeding was withheld or nonnursing women. It is possible that requirements for other anesthetic agents would be affected similarly. ◉ Effects in Breastfed Infants:Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk:A randomized, but nonblinded, study in women undergoing cesarean section compared epidural anesthesia with bupivacaine to general anesthesia with intravenous thiopental 4 mg/kg and succinylcholine 1.5 mg/kg for induction followed by nitrous oxide and isoflurane. The time to the first breastfeed was significantly shorter (107 vs 228 minutes) with the epidural anesthesia than with general anesthesia. This difference was probably caused by the anesthesia's effects on the infant, because the Apgar and neurologic and adaptive scores were significantly lower in the general anesthesia group of infants. A randomized study compared the effects of cesarean section using general anesthesia, spinal anesthesia, or epidural anesthesia, to normal vaginal delivery on serum prolactin and oxytocin as well as time to initiation of lactation. General anesthesia was performed using propofol 2 mg/kg and rocuronium 0.6 mg/kg for induction, followed by sevoflurane and rocuronium 0.15 mg/kg as needed. After delivery, patients in all groups received an infusion of oxytocin 30 international units in 1 L of saline, and 0.2 mg of methylergonovine if they were not hypertensive. Fentanyl 1 to 1.5 mcg/kg was administered after delivery to the general anesthesia group. Patients in the general anesthesia group (n = 21) had higher post-procedure prolactin levels and a longer mean time to lactation initiation (25 hours) than in the other groups (10.8 to 11.8 hours). Postpartum oxytocin levels in the nonmedicated vaginal delivery group were higher than in the general and spinal anesthesia groups. A retrospective study of women in a Turkish hospital who underwent elective cesarean section deliveries compared women who received bupivacaine spinal anesthesia (n = 170) to women who received general anesthesia (n = 78) with propofol for induction, sevoflurane for maintenance and fentanyl after delivery. No differences in breastfeeding rates were seen between the groups at 1 hour and 24 hours postpartum. However, at 6 months postpartum, 67% of women in the general anesthesia group were still breastfeeding compared to 81% in the spinal anesthesia group, which was a statistically significant difference.
来源:Drugs and Lactation Database (LactMed)
吸收、分配和排泄
在麻醉后期间,只有0.17%的异氟醚可以被作为尿液代谢物回收。
In the postanesthesia period, only 0.17% of the isoflurane taken up can be recovered as urinary metabolites.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
目前尚不清楚这种药物是否会被分泌入人乳中。
It is not known whether this drug is excreted in human milk.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险品标志:
    F,T
  • 安全说明:
    S26,S36/37/39
  • 危险类别码:
    R36/37/38
  • WGK Germany:
    3
  • 海关编码:
    3004909030
  • 危险品运输编号:
    UN 3334
  • RTECS号:
    KN6799000
  • 储存条件:
    将食品存放在密封的容器中,并将其放置在阴凉、干燥处。

SDS

SDS:32ea577c6b92733b56cc9462c2d34c41
查看
1-氯-2,2,2-三氟乙基二氟甲基醚 修改号码:5

模块 1. 化学品
产品名称: 1-Chloro-2,2,2-trifluoroethyl Difluoromethyl Ether
修改号码: 5

模块 2. 危险性概述
GHS分类
物理性危害 未分类
健康危害
皮肤腐蚀/刺激 第2级
严重损伤/刺激眼睛 2A类
特异性靶器官毒性 心血管系统, 中枢神经系统
- 单一接触 [第2级]
特异性靶器官毒性 呼吸道刺激,麻醉作用
- 单一接触 [第3级]
环境危害 未分类
GHS标签元素
图标或危害标志
信号词 警告
危险描述 造成皮肤刺激
造成严重眼刺激
可能对器官产生损害: 心血管系统 中枢神经系统
可能造成呼吸刺激
可能会导致嗜睡或头晕
防范说明
[预防] 切勿吸入。
只能在室外或通风良好的环境下使用。
使用本产品时切勿吃东西,喝水或吸烟。
处理后要彻底清洗双手。
穿戴防护手套/护目镜/防护面具。
1-氯-2,2,2-三氟乙基二氟甲基醚 修改号码:5

模块 2. 危险性概述
[急救措施] 吸入:将受害者移到新鲜空气处,在呼吸舒适的地方保持休息。
眼睛接触:用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。继续冲洗。
眼睛接触:求医/就诊
皮肤接触:用大量肥皂和水轻轻洗。
若皮肤刺激:求医/就诊。
脱掉被污染的衣物,清洗后方可重新使用。
如接触到或感不适:呼叫解毒中心/医生。
[储存] 存放于通风良好处。保持容器密闭。
存放处须加锁。
[废弃处置] 根据当地政府规定把物品/容器交与工业废弃处理机构。

模块 3. 成分/组成信息
单一物质/混和物 单一物质
化学名(中文名): 1-氯-2,2,2-三氟乙基二氟甲基醚
百分比: >98.0%(GC)
CAS编码: 26675-46-7
俗名: 2-Chloro-2-(difluoromethoxy)-1,1,1-trifluoroethane , Isoflurane
分子式: C3H2ClF5O

模块 4. 急救措施
吸入: 将受害者移到新鲜空气处,保持呼吸通畅,休息。立即呼叫解毒中心/医生。
皮肤接触: 立即去除/脱掉所有被污染的衣物。用大量肥皂和水轻轻洗。
呼叫解毒中心/医生。
眼睛接触: 用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。
立即呼叫解毒中心/医生。
食入: 呼叫解毒中心/医生。漱口。
紧急救助者的防护: 救援者需要穿戴个人防护用品,比如橡胶手套和气密性护目镜。

模块 5. 消防措施
合适的灭火剂: 干粉,泡沫,雾状水,二氧化碳
特殊危险性: 小心,燃烧或高温下可能分解产生毒烟。
特定方法: 从上风处灭火,根据周围环境选择合适的灭火方法。
非相关人员应该撤离至安全地方。
周围一旦着火:如果安全,移去可移动容器。
消防员的特殊防护用具: 灭火时,一定要穿戴个人防护用品。

模块 6. 泄漏应急处理
个人防护措施,防护用具, 使用特殊的个人防护用品(自携式呼吸器)。远离溢出物/泄露处并处在上风处。确保
紧急措施: 足够通风。
泄露区应该用安全带等圈起来,控制非相关人员进入。
环保措施: 防止进入下水道。
控制和清洗的方法和材料: 用合适的吸收剂(如:旧布,干砂,土,锯屑)吸收泄漏物。一旦大量泄漏,筑堤控
制。附着物或收集物应该立即根据合适的法律法规废弃处置。

模块 7. 操作处置与储存
处理
技术措施: 在通风良好处进行处理。穿戴合适的防护用具。防止烟雾产生。处理后彻底清洗双手
和脸。
注意事项: 如果可能,使用封闭系统。如果蒸气或浮质产生,使用通风、局部排气。
1-氯-2,2,2-三氟乙基二氟甲基醚 修改号码:5

模块 7. 操作处置与储存
操作处置注意事项: 避免接触皮肤、眼睛和衣物。
可能产生高压。小心打开。
贮存
储存条件: 保持容器密闭。冷藏储存。
存放处须加锁。
远离不相容的材料比如氧化剂存放。
包装材料: 依据法律。

模块 8. 接触控制和个体防护
工程控制: 尽可能安装封闭体系或局部排风系统。同时安装淋浴器和洗眼器。
个人防护用品
呼吸系统防护: 半面罩或全面罩呼吸器,自携式呼吸器(SCBA),供气呼吸器等。依据当地和政府法
规,使用通过政府标准的呼吸器。
手部防护: 防渗手套。
眼睛防护: 护目镜。如果情况需要,佩戴面具。
皮肤和身体防护: 防渗防护服。如果情况需要,穿戴防护靴。

模块 9. 理化特性
液体
外形(20°C):
外观: 透明
颜色: 无色-几乎无色
气味: 无资料
pH: 无数据资料
熔点: 无资料
沸点/沸程 49 °C
闪点: 无资料
爆炸特性
爆炸下限: 无资料
爆炸上限: 无资料
蒸气压:
32kPa/20°C
密度: 1.51
溶解度:
[水] 无资料
[其他溶剂] 无资料
log水分配系数 = 2.1

模块 10. 稳定性和反应性
化学稳定性: 一般情况下稳定。
危险反应的可能性: 未报道特殊反应性。
须避免接触的物质 氧化剂
危险的分解产物: 一氧化碳, 二氧化碳, 氟化氢, 氯化氢

模块 11. 毒理学信息
急性毒性: orl-rat LD50:4770 uL/kg
ihl-rat LC50:15300 ppm/3H
ipr-rat LD50:4280 uL/kg
orl-man LDLo:1071 uL/kg
对皮肤腐蚀或刺激: 无资料
对眼睛严重损害或刺激: 无资料
1-氯-2,2,2-三氟乙基二氟甲基醚 修改号码:5

模块 11. 毒理学信息
生殖细胞变异原性: mnt-rat-orl 4 mmol/kg
dnd-hmn-ihl 1 pph/2H
致癌性:
IARC = 无资料
NTP = 无资料
生殖毒性: 无资料
RTECS 号码: KN6799000

模块 12. 生态学信息
生态毒性:
鱼类: 无资料
甲壳类: 无资料
藻类: 无资料
残留性 / 降解性: 无资料
潜在生物累积 (BCF): 无资料
土壤中移动性
log水分配系数: 2.1
土壤吸收系数 (Koc): 无资料
亨利定律 无资料
constant(PaM3/mol):

模块 13. 废弃处置
如果可能,回收处理。请咨询当地管理部门。废弃处置时遵守国家、地区和当地的所有法规。

模块 14. 运输信息
联合国分类: 与联合国分类标准不一致
UN编号: 未列明

模块 15. 法规信息
《危险化学品安全管理条例》(2002年1月26日国务院发布,2011年2月16日修订): 针对危险化学品的安全使用、
生产、储存、运输、装卸等方面均作了相应的规定。


模块16 - 其他信息
N/A

制备方法与用途

化学性质

这是一种透明无色的液体,带有轻微的乙醚气味。其折光率D425为1.50,在25℃时沸点为48.5℃,蒸气压为44kPa。ND20的值为1.3002。该物质性质稳定,不易燃、不爆炸,并且能与多种有机液体互溶。

用途

异氟烷是一种高效的吸入全麻药,是安氟醚的一个异构体,其作用方式与安氟醚相似但诱导速度较慢,苏醒较快。它的毒性较低,对心肌抑制轻微,不会增加对肾上腺素的敏感性,并具有肌肉松弛作用,能够增强非去极化肌肉松弛剂的效果,几乎不对肝肾功能造成损害,但却可能导致呼吸抑制。异氟烷适用于全身麻醉及其诱导过程。

用途

该产品为一种吸入麻醉药,与安氟醚同属一类化合物。它对呼吸的抑制作用弱于安氟醚但强于氟烷,心肌抑制作用是同类药物中最轻的一种。适用于各种手术中的全身麻醉。

用途

异氟烷也可用于全身及半身麻醉的各种手术中。

生产方法

生产过程中首先将50g(0.23mol)1-氯-2,2,2-三氟乙基二氯甲醚和1.5g五氯化锑加入不锈钢反应器中,搅拌冷却后通入氟化氢气体。保持温度在0℃,直至逸出的氯化氢量达到0.35mol时停止反应,然后与26g纯度为90%的氟化产物混合,通过分馏获得纯净的产品。

生产方法

另一种生产方法是先将2,2,2-三氟乙醇用硫酸二甲酯进行甲基化生成2,2,2-三氟乙基甲基醚。然后经光照氯化得到2,2,2-三氟乙基二氯甲基醚和1-氯-2,2,2-三氟乙基二氯甲基醚的混合物。其中,可以直接将1-氯-2,2,2-三氟乙基二氯甲基醚进行氟化得到异氟烷;而另一化合物,在经过氟化后再进行氯化也能获得异氟烷。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    异氟醚 在 SbF5/C 、 氢氟酸 作用下, 反应 150.0h, 以72.6%的产率得到地氟烷
    参考文献:
    名称:
    异氟烷的气相氟化制备地氟醚
    摘要:
    有用于制造商业上重要的麻醉剂地氟烷(CF几个已知方法3 CHFOCHF 2由可商购的异氟醚的催化反应)(CF 3 CHClOCHF 2)与氟化氢。目前可用的方法的缺点是催化剂使用量高,随之而来的是环境问题,或必须在低转化率与低选择性之间进行权衡。因此,寻求一种可替代的催化剂体系,其应避免这些问题,但仍将具有气相法的优点,尤其是催化剂寿命长。现已发现由载于活性炭上的五氟化锑构成的催化剂为使用氟化氢将异氟烷氟化为氟烷的新型气相方法提供了基础。该方法以长催化剂寿命,高转化率和高选择性运行。
    DOI:
    10.1021/op100318b
  • 作为产物:
    描述:
    二氟甲基-2,2,2-三氟乙基醚偶氮二甲氧基异庚腈 作用下, 以 为溶剂, 反应 2.0h, 以3%的产率得到异氟醚
    参考文献:
    名称:
    ハロゲン化エーテル類の製造方法
    摘要:
    题目:提供一种工业规模下高效生产用于吸入麻醉的1-氯-2,2,2-三氟乙基氟甲基醚(异氟醚)或1,2,2,2-四氟乙基氟甲基醚(地氟醚)的方法。 解决方案:通过合成中间体1-氯-2,2,2-三氟乙基氯甲基醚,制备1-氯-2,2,2-三氟乙基氟甲基醚(异氟醚)或1,2,2,2-四氟乙基氟甲基醚(地氟醚)。 选项图:无
    公开号:
    JP2020011926A
  • 作为试剂:
    描述:
    四氯化碳异氟醚 、 cytochrome P540还原型辅酶II(NADPH)四钠盐 作用下, 以 various solvent(s) 为溶剂, 反应 0.12h, 以146 %的产率得到氯仿
    参考文献:
    名称:
    Stimulatory effect of anesthetics on dechlorination of carbon tetrachloride in guinea-pig liver microsomes
    摘要:
    Effects of the anesthetics isoflurane, enflurane, halothane and sevoflurane on the dechlorination of carbon tetrachloride to produce chloroform were investigated using guinea pig liver microsomes. Under anaerobic conditions, chloroform is produced from carbon tetrachloride by the microsomes in the presence of NADPH, and chloroform production from 86 mu M carbon tetrachloride was enhanced to 146%, 133%, 123% and 115% by the addition of isoflurane, enflurane, halothane and sevoflurane, respectively. The half-life of oxidized cytochrome P450 which remained during the reduction by the addition of NADPH was shortened to 51%, 54%, 60% and 80% by isoflurane, enflurane, halothane and sevoflurane, respectively, without alteration of NADPH-cytochrome c reductase activity. These anesthetics hastened the onset of the 445 nm absorption band formation which was shown by microsomes with carbon tetrachloride in the presence of NADPH under anaerobic conditions. These results indicate that the anesthetics isoflurane, enflurane, sevoflurane and halothane stimulate the reduction of cytochrome P450 results in the acceleration of the carbon tetrachloride dechlorination. These results may have implications for other type II drugs that are administered during anesthesia.
    DOI:
    10.1016/s0300-483x(96)03480-4
点击查看最新优质反应信息

文献信息

  • Synthesis of esters by selective methanolysis of the trifluoromethyl group
    作者:Keith Ramig、Miriam Englander、Florida Kallashi、Lilia Livchits、Jessica Zhou
    DOI:10.1016/s0040-4039(02)01836-1
    日期:2002.10
    The trifluoromethyl group of certain compounds containing one or two trifluoromethyl groups can be converted to the carbomethoxy group by treatment with sodium methoxide followed by aqueous acidic work-up. α-Trifluoromethyl esters can be obtained by selective methanolysis of the 1,1,1,3,3,3-hexafluoroisopropyl group in some cases. The structural requirements for the transformation are delineated, and
    某些含有一个或两个三氟甲基的化合物的三氟甲基可通过用甲醇钠处理然后进行酸性水溶液后处理而转化为碳甲氧基。在某些情况下,可以通过1,1,1,3,3,3-六氟异丙基的选择性甲醇分解获得α-三氟甲基酯。描绘了转变的结构要求,并且机械研究证实了所提出的机理,即脱氟化氢-加成-消除过程。
  • METHODS FOR PREPARING FLUORINATED VINYL ETHERS
    申请人:Huang Chialang Grand
    公开号:US20100267995A1
    公开(公告)日:2010-10-21
    A method for preparing a fluorinated vinyl ether compound comprising reacting a fluorinated ether substrate having (i) a hydrogen atom on a carbon atom that is alpha to an etheric oxygen and (ii) a fluorine atom on a carbon atom that is beta to the etheric oxygen, with an organolithium base to provide a reaction product comprising a fluorinated vinyl ether compound.
    一种制备氟化乙烯醚化合物的方法,包括将一种氟化醚底物与有机锂碱反应,所述氟化醚底物具有(i) 一个氢原子位于与乙醚氧原子相邻的碳原子的α位上,以及(ii) 一个氟原子位于与乙醚氧原子相邻的碳原子的β位上,以提供包含氟化乙烯醚化合物的反应产物。
  • Diisopropylethylamine mono(hydrogen fluoride) for nucleophilic fluorination of sensitive substrates: synthesis of sevoflurane
    作者:Linas V Kudzma、Chialang G Huang、Ralph A Lessor、Leonid A Rozov、Syeda Afrin、Florida Kallashi、Conor McCutcheon、Keith Ramig
    DOI:10.1016/s0022-1139(01)00396-7
    日期:2001.9
    fluoride) (7), is shown to be an effective and selective nucleophilic fluorinating reagent when applied to halogen-exchange reactions of chloromethyl ethers, in particular the conversion of 1,1,1,3,3,3-hexafluoroisopropyl chloromethyl ether (3) to the volatile anesthetic sevoflurane (1,1,1,3,3,3-hexafluoroisopropyl fluoromethyl ether). The amine portion of the reagent does not react with the starting
    二异丙基乙胺单(氟化氢)(8)可以通过向络合物二异丙基乙胺三(氟化氢)(7)中添加两当量的二异丙基乙胺来制备,显示出当应用于卤素-时,是一种有效且选择性的亲核氟化试剂。氯甲基醚的交换反应,特别是1,1,1,3,3,3-六氟异丙基氯甲​​基醚的转化率(3)到挥发性麻醉剂七氟醚(1,1,1,3,3,3-六氟异丙基氟甲基醚)中。试剂的胺部分不与起始原料反应生成麻烦的季铵盐,这是通过向三乙胺三(氟化氢)中加入两当量的三乙胺而形成的物质的情况。这些特定的氯甲基醚底物需要二异丙基乙胺与氟化氢的化学计量比为1:1,以提供有用的反应速率和所需的无溶剂条件下的收率。其他两种络合物,二异丙基乙胺双(氟化氢)和7对将3转化为七氟醚无效。
  • Production Method for 1,2,2,2-Tetrafluoroethyl Difluoromethyl Ether (Desflurane)
    申请人:Central Glass Company, Limited
    公开号:US20190345086A1
    公开(公告)日:2019-11-14
    Fluoral is obtained by gas-phase fluorination of chloral in the presence of a catalyst and then reacted with trimethyl orthoformate, thereby readily forming 1,2,2,2-tetrafluoroethyl methyl ether as an intermediate for production of desflurane. 1,2,2,2-Tetrafluoroethyl difluoromethyl ether (desflurane) is produced with high yield from the thus-formed 1,2,2,2-tetrafluoroethyl methyl ether by chlorination and fluorination. This method enables efficient industrial-scale production of desflurane useful as an inhalation anesthetic
    Fluoral是在催化剂存在下通过气相氟化氯醛获得,然后与三甲基正甲酸酯反应,从而轻松形成1,2,2,2-四氟乙基甲醚作为生产地氟醚的中间体。通过氯化和氟化反应,可以高产率地从形成的1,2,2,2-四氟乙基甲醚中生产1,2,2,2-四氟乙基二氟甲基醚(地氟醚)。该方法能够有效地工业规模生产地氟醚,作为吸入麻醉剂使用。
  • 一种异氟烷的制备方法
    申请人:鲁南制药集团股份有限公司
    公开号:CN112028749A
    公开(公告)日:2020-12-04
    本发明属于有机化学合成领域,具体涉及一种异氟烷的制备方法。本发明制备异氟烷的方法包括:以氟利昂‑22为原料碱性条件下得二氟甲醇,二氟甲醇经醚化反应得异氟烷。本发明提供的反应条件简单,避免了氯气的氯化过程,制备工艺简化,有效地提高了异氟烷的收率和纯度,适合工业化生产。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台