strategy for the synthesis of unsymmetrically disubstituted tetraphenylenes from 2-acetylbiphenylene has been developed via ruthenium-catalyzedC–Hfunctionalization. Four reactions, including alkenylation–cyclization, alkenylation, alkylation, and amidation, were achieved. The reactions provide easy access to a variety of unsymmetrically disubstituted tetraphenylene derivatives, which could accelerate research
Nickel-Catalyzed Enantioselective α-Alkenylation of <i>N</i>-Sulfonyl Amines: Modular Access to Chiral α-Branched Amines
作者:Lun Li、Yu-Cheng Liu、Hang Shi
DOI:10.1021/jacs.1c00622
日期:2021.3.24
α-branched amines are common structural motifs in functional materials, pharmaceuticals, and chiral catalysts. Therefore, developing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein, we describe an atom-economical, modular method for a nickel-catalyzed enantioselective α-alkenylation of readily available linear N-sulfonyl amines
The Rh(III)-catalyzed coupling of N-chloroimines with alkynes for the efficientsynthesis of isoquinolines is reported. This represents the first use of the N-Cl bond of N-chloroimines as an internal oxidant for construction of the isoquinoline skeleton. The synthesis features atom and step economy, a green solvent (EtOH), mild reaction conditions, and a broad substrate scope.2020 Elsevier Ltd. All
Spiro[indene-1,4′-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3<i>H</i>)-ones with Alkynes: A Redox-Neutral Approach
作者:Zhongsu Liu、Wenjing Zhang、Shan Guo、Jin Zhu
DOI:10.1021/acs.joc.9b01804
日期:2019.9.20
C-H activation synthesis of heterocyclic spiro[4,4]nonanes has persistently witnessed the use of additional stoichiometric transition-metal oxidant when employing C═C bond as the spiro ring closure site. Herein, we have addressed the issue by reporting a redox-neutral strategy for spiro[indene-1,4'-oxa-zolidinones] synthesis via Rh(III)-catalyzed coupling of 4-phenyl-1,3-oxazol-2(3H)-ones with alkynes
ligand was successfully applied to a Rh-catalyzed hydroformylation of various symmetrical and unsymmetrical alkynes to afford corresponding α,β-unsaturatedaldehyde products in good to excellent yields (up to 97% yield). Excellent chemo- and regioselectivities and high activities (up to 20 000 TON) were achieved. The corresponding α,β-unsaturatedaldehyde products can be transformed into many useful and