Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the leading infectious diseases to humans. It is urgent to discover novel drug targets for the development of antitubercular agents. The 2-C-methyl-Derythritol-4-phosphate (MEP) pathway for isoprenoid biosynthesis has been considered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. MEP cytidyltransferase (IspD), the third-step enzyme of the pathway, catalyzes MEP and CTP to form 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) and PPi. In the work, ispD gene from M. tuberculosis H37Rv (MtIspD) was cloned and expressed. With N-terminal fusion of a histidine-tagged sequence, MtIspD could be purified to homogeneity by one-step nickel affinity chromatography. MtIspD exists as a homodimer with an apparent molecular mass of 52 kDa. Enzyme property analysis revealed that MtIspD has high specificity for pyrimidine bases and narrow divalent cation requirements, with maximal activity found in the presence of CTP and $Mg^2+}$. The turnover number of MtIspD is $3.4 s^-1}$. The Km for MEP and CTP are 43 and $92\mu}M$, respectively. Furthermore, MtIspD shows thermal instable above $50^\circ}C$. Circular dichroism spectra revealed that the alteration of tertiary conformation is closely related with sharp loss of enzyme activity at higher temperature. This study is expected to help better understand the features of IspD and provide useful information for the development of novel antibiotics to treat M. tuberculosis.
                                    由结核分枝杆菌引起的结核病仍然是人类的主要传染病之一。发现新的药物靶点以开发抗结核药物迫在眉睫。
异戊二烯生物合成的 2-C-甲基赤藓糖醇-4-
磷酸(MEP)途径在细菌中必不可少,但在哺乳动物中却不存在,因此被认为是发现新型抗生素的一个有吸引力的靶点。MEP 细胞基转移酶(IspD)是该途径的第三步酶,催化 MEP 和 CTP 形成 4-二
磷酸胞苷基-2-C-甲基
赤藓醇(CDP-ME)和 PPi。在这项工作中,克隆并表达了结核杆菌 H37Rv 的 ispD 
基因(MtIspD)。通过组
氨酸标记序列的 N 端融合,MtIspD 可通过一步
镍亲和层析纯化至均一。MtIspD 以同源二聚体形式存在,表观分子质量为 52 kDa。酶特性分析表明,MtIspD 对
嘧啶碱基具有高度特异性,对二价阳离子的要求很低,在 CTP 和 
$Mg^2+}$ 存在时活性最大。MtIspD 的周转次数为 
$3.4 s^-1}$。MEP 和 CTP 的 Km 分别为 43 和 
$92\mu}M$ 。此外,MtIspD 在 
$50^\circ}C$ 以上显示出热不稳定性。圆二色光谱显示,三级构象的改变与酶活性在较高温度下急剧下降密切相关。这项研究有望帮助人们更好地理解IspD的特征,并为开发治疗结核杆菌的新型抗生素提供有用信息。