摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

氯胺酮 | 6740-88-1

中文名称
氯胺酮
中文别名
凯他敏
英文名称
ketamine
英文别名
2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone;(±)-ketamine;2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one
氯胺酮化学式
CAS
6740-88-1
化学式
C13H16ClNO
mdl
——
分子量
237.729
InChiKey
YQEZLKZALYSWHR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.2
  • 重原子数:
    16
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.46
  • 拓扑面积:
    29.1
  • 氢给体数:
    1
  • 氢受体数:
    2

ADMET

代谢
K粉主要通过肝脏代谢,其主要代谢物是去甲氯胺酮。K粉的生物转化对应于N-脱烷基、环己酮环的羟基化、与葡萄糖醛酸的结合以及羟基化代谢物的脱水,以形成环己烯衍生物。
Ketamine presents a mainly hepatic metabolism and its major metabolite is norketamine. The biotransformation of ketamine corresponds to N-dealkylation, hydroxylation of the cyclohexone ring, conjugation to glucuronic acid and dehydration of the hydroxylated metabolites for the formation of cyclohexene derivatives.
来源:DrugBank
代谢
K粉在肝脏中被代谢成去甲氯胺酮,后者具有降低中枢神经系统活性的作用;去甲氯胺酮进一步代谢并在尿液和胆汁中排出。
Ketamine is hepatically metabolized to norketamine, which has reduced CNS activity; norketamine is further metabolized and excreted in urine and bile.
来源:Hazardous Substances Data Bank (HSDB)
代谢
ketamine的生物转化包括N-脱烷基化(代谢物I),环己酮环的羟基化(代谢物III和IV),与葡萄糖醛酸的结合以及羟基化代谢物的脱水形成环己烯衍生物(代谢物II)。静脉给药后,ketamine浓度有一个初始斜率(α相),持续约45分钟,半衰期为10至15分钟。这一阶段在临床上对应于药物的麻醉效果。麻醉作用通过从中枢神经系统重新分布到较慢平衡的外周组织以及通过肝脏生物转化为代谢物I而终止。这种代谢物在大鼠减少氟烷需求(MAC)方面的活性大约是ketamine的1/3。ketamine的后期半衰期(β相)为2.5小时。
The biotransformation of ketamine includes N-dealkylation (metabolite I), hydroxylation of the cyclohexone ring (metabolites III and IV), conjugation with glucuronic acid and dehydration of the hydroxylated metabolites to form the cyclohexene derivative (metabolite II). Following intravenous administration, the ketamine concentration has an initial slope (alpha phase) lasting about 45 minutes with a half-life of 10 to 15 minutes. This first phase corresponds clinically to the anesthetic effect of the drug. The anesthetic action is terminated by a combination of redistribution from the CNS to slower equilibrating peripheral tissues and by hepatic biotransformation to metabolite I. This metabolite is about 1/3 as active as ketamine in reducing halothane requirements (MAC) of the rat. The later half-life of ketamine (beta phase) is 2.5 hours.
来源:Hazardous Substances Data Bank (HSDB)
代谢
盐酸氯胺酮在猫体内的药代动力学符合二室开放模型。在所有猫的血浆中都能检测到盐酸氯胺酮的N-去烷基代谢物,其峰值水平在注射后5到20分钟内达到,为盐酸氯胺酮水平的0.27到0.38倍。
The pharmacokinetics of ketamine-HCl in the cat was described by a 2-compartment open model. The n-dealkylated amine metabolite of ketamine-HCl was detected in plasma of all cats and peak levels which were 0.27 to 0.38 times ketamine-HCl level were reached between 5 and 20 min after injection.
来源:Hazardous Substances Data Bank (HSDB)
代谢
... 在狗的L4-5硬脊膜外注射氯胺酮后,研究了氯胺酮及其生物转化产物的药代动力学和分布。... 诺氯胺酮的明显形成速率常数大于去氢诺氯胺酮。然而,转化产物在脑脊液中的浓度低于母药。这些结果与氯胺酮及其代谢物在不同脑结构和组织中的分布相似。随着代谢物极性的增加,浓度降低。所有化合物都表现出特定的分布。氯胺酮对脑干表现出更大的亲和力,而诺氯胺酮和去氢诺氯胺酮主要分布在小脑和肾脏。
... The pharmacokinetics and distribution of ketamine and its biotransformation products in dogs after extradural administration of ketamine at L4-5 /were studied/. ... The apparent formation rate constant of norketamine was greater than that of dehydronorketamine. However, the concentrations of the biotransformation products in CSF were smaller than those of the parent drug. These results are similar to the distribution of ketamine and its metabolites in different cerebral structures and tissues. The concentrations decreased in concert with the increase in polarity of the metabolites. A specific distribution for all compounds was observed. Ketamine showed a greater affinity for brainstem, while norketamine and dehydronorketamine were distributed mostly in cerebellum and kidney, respectively.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别和使用:氯胺酮是一种环己酮衍生物,用作人类和兽医程序中的麻醉剂。氯胺酮盐酸盐注射液,USP被指示为不需要骨骼肌松弛的诊断和手术程序的唯一麻醉剂。人类研究:氯胺酮是一种独特的麻醉剂,因为它具有催眠和镇痛效果,也可能产生致幻副作用。没有心肺抑制使该药物成为院前环境中麻醉的受欢迎选择。近年来发现氯胺酮具有抗超敏和节省阿片类药物的效果,为管理术后和慢性疼痛状态开辟了新的方法。氯胺酮曾被用作滥用药物。氯胺酮产生各种症状,包括但不限于焦虑、不适、迷失方向、失眠、闪回、幻觉和精神病发作。长期给药后可能会出现氯胺酮依赖和耐受性。停用长期氯胺酮使用后,已经描述了一种具有精神病特征的中断综合症。与不经常使用者相比,经常娱乐使用氯胺酮的人在使用后3天内记忆力受损。还报告了闪回。频繁使用导致耐受性增加,需要增加剂量以维持类似效果。过量或给药速度过快时,氯胺酮可能会导致呼吸抑制,在这种情况下应采用支持性通气。机械支持呼吸优于使用兴奋剂。动物研究:与静脉穿刺时的物理约束相比,氯胺酮盐酸盐给药改变了恒河猴的血象。改变包括白细胞计数、总血浆蛋白和血细胞比容的降低。白细胞计数的减少主要是由于淋巴细胞的减少,其次是中性粒细胞的轻微减少。在6个月的氯胺酮治疗期中,与对照猴子相比,氯胺酮减少了恒河猴的前额叶皮层的活动,并增加了细胞死亡。在1个月氯胺酮治疗组中未发现此类减少。在大鼠的空间和非空间识别记忆测试中,训练前或训练后系统给药氯胺酮(0.3、1和3 mg/kg ip)以剂量依赖性方式破坏了表现,表明氯胺酮影响了训练前后的记忆组件。对大鼠(年龄1-16周,雌雄各半)进行氯胺酮75 mg/kg的腹腔注射,发现在出生后的前3周内,年龄的增长与睡眠时间的减少之间存在显著相关性。这种睡眠时间的减少似乎与氯胺酮环己酮氧化代谢产物的增加有关。3周龄后,雌性大鼠的睡眠时间比雄性大鼠更长,这似乎与雄性大鼠产生环己酮氧化代谢产物的能力更强有关。在大鼠中,氯胺酮或其尿液代谢物破坏了膀胱上皮细胞的增殖,导致膀胱上皮屏障缺陷。在脑发育的关键时期,单次24小时的氯胺酮麻醉导致恒河猴的脑功能出现非常长期的缺陷。氯胺酮在胎儿中诱导的神经退行模式与新生儿不同,胎儿因氯胺酮暴露导致的神经元丢失是在新生儿的2.2倍。一种亚麻醉剂量的氯胺酮在一株小鼠中增加了探索性活动,但在另一株小鼠中降低了它。因此,遗传因素可能在氯胺酮诱导的反应中发挥重要作用。硬脊膜外氯胺酮注射与单峰骆驼的尾部镇痛、镇静和共济失调有关。发表的动物研究表明,阻断NMDA受体和/或增强GABA活性的麻醉和镇静药物,在发育中的大脑中增加神经元凋亡,并在使用超过3小时后导致长期认知缺陷。
IDENTIFICATION AND USE: Ketamine is a cyclohexanone derivative used as an anesthetic agent in human and veterinary procedures. Ketamine hydrochloride injection, USP is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation. HUMAN STUDIES: Ketamine is a unique anesthetic because it has both hypnotic and analgesic effects and also potential hallucinogenic side effects. Lack of cardiopulmonary depression makes the drug a popular choice for anesthesia in the prehospital setting. In recent years ketamine has been found to have anti-hyperalgesic and opioid saving effects, opening to new ways of managing post-operative and chronic pain states. Ketamine has been used as a drug of abuse. Ketamine produces a variety of symptoms including, but not limited to, anxiety, dysphoria, disorientation, insomnia, flashbacks, hallucinations, and psychotic episodes. Ketamine dependence and tolerance are possible following prolonged administration. A withdrawal syndrome with psychotic features has been described following discontinuation of long-term ketamine use. Frequent recreational users of ketamine have been found to have impaired memory 3 days after their last dose, compared with infrequent users. Flashbacks have also been reported. Frequent use result in tolerance and the need to increase the dose in order to maintain similar effects. Respiratory depression may occur with overdosage or too rapid a rate of administration of ketamine, in which case supportive ventilation should be employed. Mechanical support of respiration is preferred to administration of analeptics. ANIMAL STUDIES: Ketamine hydrochloride administration altered the hemogram of rhesus monkeys when compared to physical restraint for venipuncture. The alterations were decreases in the leukocyte count, total plasma proteins, and hematocrit. The decrease in the leukocyte count was due primarily to a decrease in lymphocytes with a smaller decrease in neutrophils. Ketamine decreased locomotor activity and increased cell death in the prefrontal cortex of monkeys with 6 months of ketamine treatment when compared with the control monkeys. Such decreases were not found in the 1-month ketamine-treated group. Pre- or post-training systemic administration of ketamine (0.3, 1 and 3 mg/kg ip) in a dose-dependent manner disrupted rats performance in spatial and non-spatial recognition memory tests, suggesting that ketamine affected pre- and post-training memory components. Intraperitoneal injections of ketamine 75 mg/kg in rats of both sexes (age 1-16 weeks) revealed a significant relationship between increased age and decreased duration of sleeping time for both sexes during the first 3 weeks of age. This decrease in sleeping time seemed to be associated with the increased production of the cyclohexanone oxidation metabolite of ketamine. After 3 weeks of age there was a greater sleeping time in the female rat than the male and this seemed to be associated with a greater ability of the male to produce the cyclohexanone oxidation metabolite. In rats, ketamine, or its urinary metabolites, disrupted the proliferation of bladder epithelial cells, resulting in defected bladder epithelial barrier. A single 24-hr episode of ketamine anesthesia, occurring during a sensitive period of brain development, resulted in very long-lasting deficits in brain function in rhesus monkeys. The pattern of neurodegeneration induced by ketamine in fetuses was different from that in neonates, and loss of neurons attributable to ketamine exposure was 2.2 times greater in the fetal than neonatal brains. A subanesthetic dose of ketamine increased exploratory locomotion in one strain of mice, but decreased it in another strain of mice. Therefore, hereditary factors may play an important role in ketamine-induced responses. Epidural ketamine injection was associated with caudal anti-nociception, sedation and ataxia in the dromedary camels. Published animal studies demonstrate that the administration of anesthetic and sedation drugs that block NMDA receptors and/or potentiate GABA activity increase neuronal apoptosis in the developing brain and result in long-term cognitive deficits when used for longer than 3 hours.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
K粉具有多种临床上有用的特性,包括镇痛作用,并且相比其他麻醉剂具有较少的心肺抑制效果,它还能对心血管系统产生一定的刺激作用。K粉据报道可以产生全身麻醉以及局部麻醉。它与N-甲基-D-天门冬氨酸(NMDA)受体、阿片受体、单胺类受体、毒蕈碱受体和电压敏感的钙离子通道相互作用。与其他全身麻醉剂不同,K粉不与GABA受体相互作用。
Ketamine has several clinically useful properties, including analgesia and less cardiorespiratory depressant effects than other anaesthetic agents, it also causes some stimulation of the cardiocascular system. Ketamine has been reported to produce general as well as local anaesthesia. It interacts with N-methyl-D-aspartate (NMDA) receptors, opioid receptors, monoaminergic receptors, muscarinic receptors and voltage sensitive Ca ion channels. Unlike other general anaesthetic agents, ketamine does not interact with GABA receptors.
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 肝毒性
短期使用氯胺酮进行麻醉与罕见的情况有关,如血清酶水平升高,但并未出现临床上明显的肝脏损伤。然而,在长期或间歇性使用的情况下,已经描述了不寻常的胆道和肝脏并发症。与它对尿道的相似效果一样,氯胺酮也可能导致胆道系统的异常,表现为肝内和肝外胆管的扩张和形状不规则。患者通常会出现右上象限的疼痛和压痛,伴有血清碱性磷酸酶和转氨酶水平的升高,胆红素水平略有或没有增加(案例1)。胆道成像可能揭示肝内和肝外胆管的扩张和形状不规则,以及胆总管的梭形扩张,提示胆总管囊肿。肝脏活检显示慢性肝梗阻或硬化性胆管炎的迹象。停止使用氯胺酮后,通常会缓慢改善,几个月后胆道成像上发现的异常可能不再可检测。
Short term use of ketamine for anesthesia has been associated with rare instances of serum enzyme elevations, but not with clinically apparent liver injury. With chronic or intermittent use, however, unusual biliary and hepatic complications have been described. In a manner similar to its effects on the urinary tract, ketamine can also cause abnormalities in the biliary system with dilation and irregularity of the intra- and extra-hepatic bile ducts. Patients typically developed right upper quadrant pain and tenderness associated with elevations in serum alkaline phosphatase and aminotransferase levels, with minimal or no increase in bilirubin (Case 1). Biliary imaging may reveal dilation and irregularity of the intra- and extra-hepatic bile ducts with fusiform dilation of the common bile duct suggestive of choledochal cysts. Liver biopsy demonstrates changes suggestive of chronic liver obstruction or sclerosing cholangitis. Discontinuation of ketamine is usually followed by slow improvement and the abnormalities found on biliary imaging may no longer be demonstrable several months later.
来源:LiverTox
毒理性
  • 药物性肝损伤
化合物:氯胺酮
Compound:ketamine
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注解:较少的药物性肝损伤关注
DILI Annotation:Less-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
ketamine吸收非常迅速,生物利用度约为93%。经过首次通过代谢后,只有17%的给药剂量被吸收。它分布非常快,分布半衰期为1.95分钟。在血浆中峰值时的Cmax水平达到0.75微克/毫升,在脑脊液中达到0.2微克/毫升。
Ketamine absorption is very rapid and the bioavailability is around 93%. After the first pass metabolism, only 17% of the administered dose is absorbed. It distributes very rapidly and presents a distribution half-life of 1.95 min. The Cmax levels at peak reach 0.75 mcg/ml in plasma and 0.2 mcg/ml in cerebrospinal fluid.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
药代动力学研究表明,给药剂量的85-95%主要以代谢物的形式在尿液中恢复。酮替芬的其他消除途径包括胆汁和粪便。当静脉给药时,给药剂量的91%会在尿液中恢复,3%会在粪便中恢复。
Pharmacokinetic studies have resulted in the recovery of 85-95% of the administered dose in urine mainly in the form of metabolites. Some other routes of elimination of ketamine are bile and feces. When administered intravenously the resultant recovery is distributed by 91% of the administered dose in urine and 3% in feces.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
中心室在非稳态和稳态下的表观分布容积分别为371.3毫升/千克和4060.3毫升/千克。
The apparent volume of distribution of the central compartment and at steady-state are 371.3 ml/kg and 4060.3 ml/kg, respectively.
来源:DrugBank
吸收、分配和排泄
  • 清除
盐酸氯胺酮的清除率很高,大约为95 L/h/70kg。
The clearance rate of ketamine is high and of around 95 L/h/70kg.
来源:DrugBank
吸收、分配和排泄
K粉具有较大的分布容积和快速清除,这使得它适合连续输注,而不会像戊硫醚那样延长作用持续时间。与其它注射麻醉药相比,K粉的蛋白质结合要低得多。
Ketamine has a large volume of distribution and rapid clearance that make it suitable for continuous infusion without the lengthening in duration of action seen with thiopental. Protein binding is much lower with ketamine than with the other parenteral anesthetics.
来源:Hazardous Substances Data Bank (HSDB)

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Synthesis of (Z)- and (E)-6-hydroxyketamine
    摘要:
    DOI:
    10.1021/jo00192a011
  • 作为产物:
    描述:
    2-hydroxy-2-(2-chlorophenyl)-1-cyclohexane-N-methylimine 以 萘烷 为溶剂, 反应 4.0h, 以72.5%的产率得到氯胺酮
    参考文献:
    名称:
    从无毒程序合成氯胺酮:一种新的有效途径
    摘要:
    摘要 氯胺酮[2-(2-氯苯基)-2-甲基氨基-环己-1-酮]已用于兽医和人类医学。在这项研究中,通过使用羟基酮中间体,已经开发了一种新的有效方案来合成氯胺酮。该药物的合成已通过五个步骤完成。首先,使环己酮与2-氯苯基溴化镁试剂反应,然后在酸性离子液体1-甲基-3- [2-(二甲基-4-磺丁基-铵)乙烷]咪唑氢存在下脱水硫酸盐得到1-(2-氯苯基)-环己烯。用高锰酸钾氧化合成的烯烃,得到相应的羟基酮中间体。该中间体被甲胺胺化,最后在高温下将得到的亚胺重排,导致了氯胺酮的合成。所有中间体和产物的特征在于1 H-NMR和IR光谱。优点是无需使用有毒溴(氯胺酮合成中大多数已报道的方法中使用了有毒溴),高反应产率和使用可商购的安全材料,并且在脱水步骤中无需使用腐蚀性酸是其中的一些优势氯胺酮合成的常规报道 图形摘要 开发了一种高效的五步合成氯胺酮的方案。环己酮与2-氯苯基溴化镁反应,然后用酸性离子液
    DOI:
    10.1007/s12039-020-01827-9
  • 作为试剂:
    描述:
    1-萘乙酮四甲基亚砜正丁基亚砜氯胺酮氢碘酸硫氰酸铵 、 sulfur 作用下, 以 1,4-二氧六环乙二醇二甲醚 为溶剂, 以37 %的产率得到
    参考文献:
    名称:
    CN117304135
    摘要:
    公开号:
点击查看最新优质反应信息

文献信息

  • DISUBSTITUTED TRIFLUOROMETHYL PYRIMIDINONES AND THEIR USE
    申请人:BAYER PHARMA AKTIENGESELLSCHAFT
    公开号:US20160221965A1
    公开(公告)日:2016-08-04
    The present application relates to novel 2,5-disubstituted 6-(trifluoromethyl)pyrimidin-4(3H)-one derivatives, to processes for their preparation, to their use alone or in combinations for the treatment and/or prevention of diseases, and to their use for preparing medicaments for the treatment and/or prevention of diseases, in particular for treatment and/or prevention of cardiovascular, renal, inflammatory and fibrotic diseases.
    本申请涉及新颖的2,5-二取代6-(三氟甲基)嘧啶-4(3H)-酮衍生物,其制备方法,其单独或与其他药物联合用于治疗和/或预防疾病,以及用于制备治疗和/或预防疾病的药物,特别是用于治疗和/或预防心血管、肾脏、炎症和纤维化疾病。
  • Central nervous system antiischemic agents
    申请人:Bristol-Myers Squibb Company
    公开号:EP0559569A1
    公开(公告)日:1993-09-08
    A series of phenylalkylaminoalkyl derivatives of Formula I wherein Ar is naphtyl or phenyl;    R¹ is hydrogen, fluoro or R⁴CONH-;    R² is hydrogen or C₁-₆ alkyl;    R₃ is C₁-₆ alkyl;    R⁴ is C₁-₆ alkyl or phenyl- C₁-₆ alkyl;    x is zero or the integers 1 and 2;    m is selected from the integers 1 to 6; and    n is selected from the integers 2 and 3, has been found to provide effective antiischemic protection for CNS tissue, particularly neurons. A method of treatment to protect against CNS ischemia, such as that resulting from trauma or stroke or other ischemic conditions, comprises administration of these novel compounds to an individual in need of such treatment.
    一系列的Formula I的苯基烷基氨基烷基衍生物已被发现能够为中枢神经系统组织,特别是神经元,提供有效的抗缺血保护。一种治疗方法用于保护中枢神经系统缺血,例如由创伤、中风或其他缺血病症引起的缺血情况,包括将这些新化合物用于需要此类治疗的个体。其中Ar为萘基或苯基;R¹为氢、氟或R⁴CONH-;R²为氢或C₁-₆烷基;R₃为C₁-₆烷基;R⁴为C₁-₆烷基或苯基-C₁-₆烷基;x为零或整数1和2;m从整数1到6中选择;n从整数2和3中选择。
  • Eflornithine Prodrugs, Conjugates and Salts, and Methods of Use Thereof
    申请人:Xu Feng
    公开号:US20100120727A1
    公开(公告)日:2010-05-13
    In one aspect, the present invention provides a composition of a covalent conjugate of an eflornithine analog with an anti-inflammatory drug. In another aspect, the present invention provides a composition of an eflornithine prodrug. In another aspect, the present invention provides a composition of an eflornithine or its derivatives aspirin salt. In another aspect, the present invention provides methods for treating or preventing cancer using the conjugates or salts of eflornithine analogs or eflornithine prodrugs.
    在一个方面,本发明提供了一种氟硝西汀类似物与抗炎药物的共价结合物的组合物。在另一个方面,本发明提供了一种氟硝西汀前药的组合物。在另一个方面,本发明提供了一种氟硝西汀或其衍生物水杨酸盐的组合物。在另一个方面,本发明提供了使用氟硝西汀类似物或氟硝西汀前药的共轭物或盐来治疗或预防癌症的方法。
  • [EN] NOVEL COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS THEREOF FOR THE TREATMENT OF INFLAMMATORY DISORDERS<br/>[FR] NOUVEAUX COMPOSÉS ET COMPOSITIONS PHARMACEUTIQUES LES COMPRENANT POUR LE TRAITEMENT DE TROUBLES INFLAMMATOIRES
    申请人:GALAPAGOS NV
    公开号:WO2017012647A1
    公开(公告)日:2017-01-26
    The present invention discloses compounds according to Formula (I), wherein R1, R3, R4, R5, L1, and Cy are as defined herein. The present invention also provides compounds, methods for the production of said compounds of the invention, pharmaceutical compositions comprising the same and their use in allergic or inflammatory conditions, autoimmune diseases, proliferative diseases, transplantation rejection, diseases involving impairment of cartilage turnover, congenital cartilage malformations, and/or diseases associated with hypersecretion of IL6 and/or interferons. The present invention also methods for the prevention and/or treatment of the aforementioned diseases by administering a compound of the invention.
    本发明公开了根据式(I)的化合物,其中R1、R3、R4、R5、L1和Cy如本文所定义。本发明还提供了该发明的化合物、制备该化合物的方法、包括相同化合物的药物组合物以及它们在过敏或炎症症状、自身免疫疾病、增殖性疾病、移植排斥、涉及软骨周转障碍的疾病、先天软骨畸形和/或与IL6和/或干扰素过度分泌相关的疾病中的使用。本发明还提供了通过给予该发明的化合物来预防和/或治疗上述疾病的方法。
  • [EN] ALPHA-KETOAMIDE DERIVATIVE, AND PRODUCTION METHOD AND USE THEREOF<br/>[FR] DERIVE D'ALPHA-CETOAMIDE, SON PROCEDE DE PRODUCTION ET D'UTILISATION
    申请人:SENJU PHARMA CO
    公开号:WO2005056519A1
    公开(公告)日:2005-06-23
    The present invention provides a compound represented by the formula (I): (INSERT CHEMICAL FORMULA) (wherein R1 is a lower alkyl substituted by a lower alkoxy or a heterocyclic group, or a heterocyclic group; R2 is a lower alkyl optionally substituted by a phenyl; and R3 is a lower alkyl optionally substituted by a halogen, a lower alkoxy or a phenyl, or a fused polycyclic hydrocarbon group), which is well absorbed orally, exhibits durability of good blood level and has potent calpain inhibitory activity.
    本发明提供了一种化合物,其化学式表示为(I):(插入化学式)(其中R1是由低烷基取代的低烷氧基或杂环基,或者是杂环基;R2是可选择地由苯基取代的低烷基;R3是可选择地由卤素、低烷氧基或苯基取代的低烷基,或者是融合的多环碳氢基),该化合物在口服后被很好地吸收,表现出良好的血液水平持久性,并具有强大的钙蛋白酶抑制活性。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐