well‐developed and growing body of work in Cu catalysis, the potential of Cu to serve as a photocatalyst remains underexplored. Reported herein is the first example of visible‐light‐induced Cu‐catalyzed decarboxylative C(sp3)−H alkylation of glycine for preparing α‐alkylated unnatural α‐amino acids. It merits mentioning that the mild conditions and the good functional‐group tolerance allow the modification
The present disclosure relates to compounds, compositions and methods for the treatment of hepatitis C virus (HCV) infection. Also disclosed are pharmaceutical compositions containing such compounds and methods for using these compounds in the treatment of HCV infection.
[EN] HEPATITIS C VIRUS INHIBITORS<br/>[FR] INHIBITEURS DU VIRUS DE L'HÉPATITE C
申请人:BRISTOL MYERS SQUIBB CO
公开号:WO2010138488A1
公开(公告)日:2010-12-02
This disclosure concerns novel compounds of Formula (I) as defined in the specification and compositions comprising such novel compounds. These compounds are useful antiviral agents, especially in inhibiting the function of the NS5A protein encoded by Hepatitis C virus (HCV). Thus, the disclosure also concerns a method of treating HCV related diseases or conditions by use of these novel compounds or a composition comprising such novel compounds.
[EN] BI-1H-BENZIMIDAZOLES AS HEPATITIS C VIRUS INHIBITORS<br/>[FR] INHIBITEURS DU VIRUS DE L'HÉPATITE C
申请人:BRISTOL MYERS SQUIBB CO
公开号:WO2010017401A1
公开(公告)日:2010-02-11
The present disclosure relates to compounds, compositions and methods for the treatment of Hepatitis C virus (HCV) infection. Also disclosed are pharmaceutical compositions containing such compounds and methods for using these compounds in the treatment of HCV infection.
[EN] MYOGLOBIN-BASED CATALYSTS FOR CARBENE TRANSFER REACTIONS<br/>[FR] CATALYSEURS À BASE DE MYOGLOBINE POUR RÉACTIONS DE TRANSFERT DE CARBÈNE
申请人:UNIV ROCHESTER
公开号:WO2016086015A1
公开(公告)日:2016-06-02
Methods are provided for carrying out carbene transfer transformations such as olefin cyclopropanation reactions, carbene heteroatom-H insertion reactions (heteroatom = N, S, Si), sigmatropic rearrangement reactions, and aldehyde olefination reactions with high efficiency and selectivity by using a novel class of myoglobin-based biocatalysts. These methods are useful for the synthesis of a variety of organic compounds which contain one or more new carbon-carbon or carbon-heteroatom (N, S, or Si) bond. The methods can be applied for conducting these transformations in vitro (i.e., using the biocatalyst in isolated form) and in vivo (i.e., using the biocatalyst in a whole cell system).