Cobalt(II)-Catalyzed Conversion of Allylic Alcohols/Acetates to Allylic Amides in the Presence of Nitriles
摘要:
Various secondary allylic alcohols or their acetates and tertiary allylic alcohols can be converted to the corresponding transposed allylic amides in the presence of a catalytic quantity of cobalt(II) chloride and acetic anhydride in acetonitrile. Tertiary alcohols undergo complete rearrangement whereas secondary ones afford a mixture of regioisomers. Moderate yields of amides are also obtained by reacting acrylonitrile with secondary alcohols in 1,2-dichloroethane. The presence of acetic anhydride or acetic acid is crucial to the formation of amides as the absence of the former affords no amides and the allylic alcohols are mainly recovered as regioisomeric mixtures. The regioselectivity during amide formation can be enhanced by using cobalt complexes 14-16 in acetic acid medium. Some preliminary studies indicate that these reactions are proceeding via an pi-allyl complex or tight ion pair rather than a [3,3] sigmatropic rearrangement of acetamidate obtained in a Pinner reaction.
IBS-Catalyzed Oxidative Rearrangement of Tertiary Allylic Alcohols to Enones with Oxone
作者:Muhammet Uyanik、Ryota Fukatsu、Kazuaki Ishihara
DOI:10.1021/ol9013188
日期:2009.8.6
A 2-iodoxybenzenesulfonic acid (IBS)-catalyzed oxidative rearrangement of tertiary allylic alcohols to enones with powdered Oxone in the presence of potassium carbonate and tetrabutylammonium hydrogen sulfate has been developed.
Electroorganic chemistry. 143. Electroreductively promoted diastereoselective coupling of ketones with allylic alcohols. Synthesis of optically active 1,4-diols
Cathodic coupling of ketones with allylic alcohols has been found to take place with high regio- and stereoselectivities at the position gamma to the hydroxyl group to afford the corresponding 1,4-diols.
Cobalt(II)-Catalyzed Conversion of Allylic Alcohols/Acetates to Allylic Amides in the Presence of Nitriles
作者:Manoj Mukhopadhyay、M. Madhava Reddy、G. C. Maikap、Javed Iqbal
DOI:10.1021/jo00114a013
日期:1995.5
Various secondary allylic alcohols or their acetates and tertiary allylic alcohols can be converted to the corresponding transposed allylic amides in the presence of a catalytic quantity of cobalt(II) chloride and acetic anhydride in acetonitrile. Tertiary alcohols undergo complete rearrangement whereas secondary ones afford a mixture of regioisomers. Moderate yields of amides are also obtained by reacting acrylonitrile with secondary alcohols in 1,2-dichloroethane. The presence of acetic anhydride or acetic acid is crucial to the formation of amides as the absence of the former affords no amides and the allylic alcohols are mainly recovered as regioisomeric mixtures. The regioselectivity during amide formation can be enhanced by using cobalt complexes 14-16 in acetic acid medium. Some preliminary studies indicate that these reactions are proceeding via an pi-allyl complex or tight ion pair rather than a [3,3] sigmatropic rearrangement of acetamidate obtained in a Pinner reaction.
Oxidative Rearrangement of Tertiary Allylic Alcohols Employing Oxoammonium Salts
methods for oxidative rearrangement of tertiary allylic alcohols to β-substituted α,β-unsaturated carbonyl compounds employing oxoammonium salts are described. The methods developed are applicable to acyclic substrates as well as medium membered ring substrates and macrocyclic substrates. The counteranion of the oxoammonium salt plays crucial roles on this oxidative rearrangement.