摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

s-丁基自由基 | 2348-55-2

中文名称
s-丁基自由基
中文别名
——
英文名称
Butylradikal
英文别名
sec-Butyl-Radikal;2-Butyl radical
s-丁基自由基化学式
CAS
2348-55-2
化学式
C4H9
mdl
——
分子量
57.1155
InChiKey
ULOIAOPTGWSNHU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.9
  • 重原子数:
    4
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.75
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

SDS

SDS:edb4f6a39dc2cf7c79e904f8ae22bd2b
查看

反应信息

点击查看最新优质反应信息

文献信息

  • Laser powered homogeneous pyrolysis of butane initiated by methyl radicals in a quasi-wall-free reactor at 750–1000 K
    作者:Elke Goos、Horst Hippler、Karlheinz Hoyermann、Bettina Jürges
    DOI:10.1039/b005219l
    日期:——
    The pyrolysis of n-butane, initiated by methyl radicals has been studied in the temperature range 750–1000 K and at pressures 0.08–0.13 bar in a quasi-wall-free reactor using laser heating by fast vibrational–translational (V–T) energy transfer. This is a convenient method to study homogeneous high-temperature kinetics since the reactor walls remain cold. The radial temperature distribution in the
    甲基自由基引发的正丁烷热解已经在 750-1000 K 的温度范围和 0.08-0.13 bar 的压力下在准无壁反应器中使用激光加热通过快速振动-平移 (V-T) 进行了研究能量转移。由于反应器壁保持冷态,因此这是一种研究均相高温动力学的便捷方法。已经通过四种不同的方法研究了反应器中的径向温度分布:固定热平衡、光吸收、压力升高和异构化反应速率的温度依赖性。通过二叔丁基过氧化物的快速热解产生甲基自由基,并通过使用GC-MS进行产物分析。模型体系(n-C4H10+CH3)全反应的主要产物为C2H4C3H6C3H8、而 1-C4H8、n-C5H12、iso- 是次要组分,均表现出强烈的温度依赖性。通过为高温丁烷和低温正戊烷氧化开发的 61 种和 164 个反应的动力学模型分析产物分布和温度依赖性。在我们的实验研究和建模之间发现了很好的一致性。然而,我们不得不稍微调整反应的速率常数。在
  • The reactivity of ketyl and alkyl radicals in reactions with carbonyl compounds
    作者:E. T. Denisov
    DOI:10.1007/bf02494263
    日期:1998.11
    parabolic model of bimolecular radical reactions was used for analysis of the hydrogen transfer reactions of ketyl radicals: >C·OH+R1COR2→>C=O+R1R2C·OH. The parameters describing the reactivity of the reagents were calculated from the experimental data. The parameters that characterize the reactions of ketyl and alkyl radicals as hydrogen donors with olefins and with carbonyl compounds were obtained: >C·OH
    双分子自由基反应的抛物线模型用于分析羰基自由基的氢转移反应:>C·OH+R1COR2→>C=O+R1R2C·OH。描述试剂反应性的参数由实验数据计算。得到表征作为氢供体的羰基和烷基自由基与烯烃和羰基化合物反应的参数:>C·OH+R1CH=CH2→>C=O+R1C·HCH3;>R1CH= +R2C·H R3→R2C·HCH3+R2CH=CHR3。这些参数用于计算这些转换的活化能。比较了自由基和分子(醛、酮和醌)从 C-H 和 O-H 键夺氢反应的动力学参数。
  • Kinetics of the reactions of () and () atoms with C3H8,C3D8, n-C4H10, and i-C4H10 at 298 K
    作者:Kanami Hitsuda、Kenshi Takahashi、Yutaka Matsumi、Timothy J. Wallington
    DOI:10.1016/s0009-2614(01)00947-2
    日期:2001.9
    The title reactions were studied using laser flash photolysis in conjunction with vacuum ultraviolet laser-induced fluorescence techniques. Separate monitoring of the two spin orbit states, and , was used to measure the kinetics of the chemical reactions of and , and physical quenching of . The rate constants for chemical reactions of atoms with C3H8, n-C4H10, and i-C4H10 are approximately 30% of those
    使用激光闪光光解结合真空紫外激光诱导的荧光技术研究了标题反应。单独的监控两个自旋轨道状态,并且,被用于测量的化学反应的动力学和,和物理淬火。原子与C 3 H 8,n -C 4 H 10和i -C 4 H 10进行化学反应的速率常数约为原子的30%。没有观察到原子与C 3 D 8发生化学反应和C 2 H 6(<17%的反应速率)。
  • Kinetics and thermochemistry of the R+HBr⇄RH+Br (R=n-C3H7, isoC3H7, n-C4H9, isoC4H9, sec-C4H9 or tert-C4H9) equilibrium
    作者:Jorma A. Seetula、Irene R. Slagle
    DOI:10.1039/a608224f
    日期:——
    The kinetics of the reactions of n-C 3 H 7 , isoC 3 H 7 , n-C 4 H 9 , isoC 4 H 9 , sec-C 4 H 9 and tert-C 4 H 9 radicals, R, with HBr have been investigated in a heatable tubular reactor coupled to a photoionization mass spectrometer. The reactions were studied by a time-resolved technique under pseudo-first-order conditions, where the rate constants of R+HBr reactions were obtained by monitoring the decay of the radical as a function of time. The radical was photogenerated in situ in the flow reactor by pulsed 248 nm exciplex laser radiation. All six reactions were studied separately over a wide range of temperatures and, in these temperature ranges, the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ+Students t values, units cm 3 molecule -1 s -1 ): k(n-C 3 H 7 )=(1.6±0.2) ×10 -12 exp[+(5.4±0.2) kJ mol -1 /RT], k(isoC 3 H 7 )=(1.4±0.2)×10 -12 exp[+(6.9±0.2) kJ mol -1 /RT], k(n-C 4 H 9 )=(1.3±0.2) ×10 -12 exp[+(6.4±0.4) kJ mol -1 /RT], k(isoC 4 H 9 )=(1.4±0.2) ×10 -12 exp[+(6.1±0.2) kJ mol -1 /RT], k(sec-C 4 H 9 )=(1.4±0.3) ×10 -12 exp[+(7.5±0.3) kJ mol -1 /RT] and k(tert-C 4 H 9 )=(1.2±0.3 )×10 -12 exp[+(8.3±0.3) kJ mol -1 /RT]. The kinetic information was combined with the kinetics of the Br+RH reactions to calculate the entropy and the heat of formation values for the radicals studied. The thermodynamic values were obtained at 298 K using a second-law procedure. The entropy values and enthalpies of formation are (entropy in J K -1 mol -1 and enthalpy in kJ mol -1 ): 284±5, 100.8±2.1 (n-C 3 H 7 ); 281±5, 86.6±2.0 (isoC 3 H 7 ); 329±5, 80.9±2.2 (n-C 4 H 9 ); 316±5, 72.7±2.2 (isoC 4 H 9 ); 330±5, 66.7±2.1 (sec-C 4 H 9 ) and 315±4, 51.8±1.3 (tert-C 4 H 9 ). The C–H bond strength of analogous saturated hydrocarbons derived from the enthalpy of reaction values are (in kJ mol -1 ): 423.3±2.1 (primary C–H bond in propane), 409.1±2.0 (secondary C–H bond in propane), 425.4±2.1 (primary C–H bond in n-butane), 425.2±2.1 (primary C–H bond in isobutane), 411.2±2.0 (secondary C–H bond in n-butane) and 404.3±1.3 (tertiary C–H bond in isobutane). The enthalpy of formation values are used in group additivity calculations to estimate Δ f H 298 ° values of six pentyl and four hexyl free radical isomers.
    n-C₃H₇、isoC₃H₇、n-C₄H₉、isoC₄H₉、sec-C₄H₉和tert-C₄H₉自由基R与HBr的反应动力学已在一台可加热的管式反应器中进行研究,并与光电离质谱仪联结。反应通过伪一阶条件下的时间分辨技术进行研究,R+HBr反应的速率常数是通过监测自由基随时间的衰减获得的。自由基是在流动反应器中通过脉冲248 nm的激发态激光辐射原位光生。六种反应都在广泛的温度范围内分别研究,在这些温度范围内,测定的速率常数拟合到Arrhenius表达式(所声明的误差限是1σ+学生t值,单位为cm³ molecule⁻¹ s⁻¹): k(n-C₃H₇) = (1.6±0.2) × 10⁻¹² exp[+(5.4±0.2) kJ mol⁻¹ /RT], k(isoC₃H₇) = (1.4±0.2) × 10⁻¹² exp[+(6.9±0.2) kJ mol⁻¹ /RT], k(n-C₄H₉) = (1.3±0.2) × 10⁻¹² exp[+(6.4±0.4) kJ mol⁻¹ /RT], k(isoC₄H₉) = (1.4±0.2) × 10⁻¹² exp[+(6.1±0.2) kJ mol⁻¹ /RT], k(sec-C₄H₉) = (1.4±0.3) × 10⁻¹² exp[+(7.5±0.3) kJ mol⁻¹ /RT], k(tert-C₄H₉) = (1.2±0.3) × 10⁻¹² exp[+(8.3±0.3) kJ mol⁻¹ /RT]。 这些动力学信息与Br+RH反应的动力学结合,用于计算所研究自由基的熵和形成热值。这些热力学值是在298 K下通过第二法则程序获得的。熵值和形成焓为(熵单位为J K⁻¹ mol⁻¹,焓单位为kJ mol⁻¹):284±5, 100.8±2.1 (n-C₃H₇);281±5, 86.6±2.0 (isoC₃H₇);329±5, 80.9±2.2 (n-C₄H₉);316±5, 72.7±2.2 (isoC₄H₉);330±5, 66.7±2.1 (sec-C₄H₉) 和 315±4, 51.8±1.3 (tert-C₄H₉)。 根据反应焓值推导的类似饱和烃的C-H键强度为(单位为kJ mol⁻¹):423.3±2.1(丙烷的原级C-H键),409.1±2.0(丙烷的次级C-H键),425.4±2.1(正丁烷的原级C-H键),425.2±2.1(异丁烷的原级C-H键),411.2±2.0(正丁烷的次级C-H键)和404.3±1.3(异丁烷的三级C-H键)。形成焓值用于分组加法计算,以估计六个戊基和四个己基自由基异构体的ΔfH₂₉₈°值。
  • Arrhenius Parameters for the Reactions of Hydrogen and Deuterium Atoms with Four Butenes
    作者:Takeshi Kyogoku、Toshifumi Watanabe、Shigeru Tsunashima、Shin Sato
    DOI:10.1246/bcsj.56.19
    日期:1983.1
    The absolute rate constants of the H and D atom addition to 1-butene, cis- and trans-2-butenes, and isobutene have been measured over the temperature range 200–500 K at the total pressure of about 600 Torr (1 Torr=133.3 Pa). The rate constants obtained were well expressed by the Arrhenius equations: k(H+1-butene)=(2.48±0.43)exp[−(1492±94)⁄RT], k(H+cis-2-butene)=(2.67±0.39)exp[−(1918±83)⁄RT], k(H+trans-2-butene)=(3
    H 和 D 原子加成到 1-丁烯、顺式和反式 2-丁烯异丁烯的绝对速率常数已在 200-500 K 的温度范围内在大约 600 Torr 的总压力下测量(1 Torr= 133.3 帕)。获得的速率常数可以用阿伦尼乌斯方程很好地表达:k(H+1-丁烯)=(2.48±0.43)exp[-(1492±94)⁄RT],k(H+cis-2-丁烯)=( 2.67±0.39)exp[−(1918±83)⁄RT], k(H+trans-2-butene)=(3.96±0.27)exp[−(2096±37)⁄RT], k(H+异丁烯) =(2.08±0.16)exp[−(860±49)⁄RT], k(D+1-丁烯)=(2.42±0.72)exp[−(1642±169)⁄RT], k(D+cis- 2-丁烯)=(2.25±0.19)exp[-(2082±48)⁄RT],k(D+反式-2-丁烯)=(2.33±0
查看更多