Slowly metabolized by hydrolysis and N-acetylation; also undergoes spontaneous chemical degradation and further hydrolysis to constitutive amino acids and their degredates, including dihydroxyhomotyrosine and N-acetyl-dihydroxyhomotyrosine.
Caspofungin is slowly metabolized in the liver via hydrolysis and N-acetylation; 35 and 41% of the parent drug and metabolites were excreted in feces and urine, respectively, following a single IV radiolabeled dose.
The metabolism, excretion, and pharmacokinetics of caspofungin were investigated after administration of a single intravenous dose to mice, rats, rabbits, and monkeys. ... Excretion of radioactivity in all species studied was slow, and low levels of radioactivity were detected in daily urine and fecal samples throughout a prolonged collection period. Although urinary profiles indicated the presence of several metabolites (M0, M1, M2, M3, M4, M5, and M6), the majority of the total radioactivity was associated with the polar metabolites M1 [4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine] and M2 (N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine). Caspofungin was thus primarily eliminated by metabolic transformation; however, the rate of metabolism was slow. ...
Caspofungin is slowly metabolized by hydrolysis and N-acetylation. Caspofungin also undergoes spontaneous chemical degradation to an open-ring peptide compound, L-747969. At later time points (> or = 5 days postdose), there is a low level (< or = 7 picomoles/mg protein, or < or = 1.3% of administered dose) of covalent binding of radiolabel in plasma following single-dose administration of (3)H caspofungin acetate, which may be due to two reactive intermediates formed during the chemical degradation of caspofungin to L-747969. Additional metabolism involves hydrolysis into constitutive amino acids and their degradates, including dihydroxyhomotyrosine and N-acetyl-dihydroxyhomotyrosine. These two tyrosine derivatives are found only in urine, suggesting rapid clearance of these derivatives by the kidneys. /Caspofungin acetate/
... Following a 1 hr IV infusion of 70 mg of (3)HCaspofungin acetate to healthy subjects, excretion of drug-related material was very slow, such that 41 and 35% of the dosed radioactivity was recovered in urine and feces, respectively, over 27 days. Plasma and urine samples collected around 24 hr postdose contained predominantly unchanged caspofungin acetate, together with trace amounts of a peptide hydrolysis product, M0, a linear peptide. However, at later sampling times, M0 proved to be the major circulating component, whereas corresponding urine specimens contained mainly the hydrolytic metabolites M1 and M2, together with M0 and unchanged MK-0991, whose cumulative urinary excretion over the first 16 days postdose represented 13, 71, 1, and 9%, respectively, of the urinary radioactivity. The major metabolite, M2, was highly polar and extremely unstable under acidic conditions when it was converted to a less polar product identified as N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine gamma-lactone. Derivatization of M2 in aqueous media led to its identification as the corresponding gamma-hydroxy acid, N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine. Metabolite M1, which was extremely polar, eluting from HPLC column just after the void volume, was identified by chemical derivatization as des-acetyl-M2. Thus, the major urinary and plasma metabolites of MK-0991 resulted from peptide hydrolysis and/or N-acetylation. /Caspofungin acetate/
... In this study the efficacies of caspofungin and meropenem - separately and together - in mice with disseminated candidiasis were studied. Immunocompetent mice were infected intravenously with 2x10(6) CFU of Candida albicans. At 24 hr postinfection, intraperitoneal therapy was initiated and was continued for 7 days. Therapy groups included those given caspofungin (0.5, 1.25, 5 mg/kg/day), meropenem (20 mg/kg/day), and a combination of the two drugs. ... Kidney CFU counts showed that mice that had received both drugs had lower residual burdens. Caspofungin was effective at doses of 0.5, 1.25, 5 mg/kg compared to infected untreated controls. In vitro, MICs of caspofungin and meropenem were <0.075 ug/mL and >64 ug/mL, respectively. Synergism was observed with the combination. Histopathology showed that the degree of inflammation was 25% less and tubular necrosis was more restricted in combined therapy than monotherapy. The results indicate that concurrent caspofungin and meropenem therapy may be beneficial.
Concomitant use /with tacrolimus/ may result in decreased tacrolimus blood concentrations; monitoring of tacrolimus concentrations is recommended, and dosage adjustments may be required.
Potential pharmacokinetic interaction (reduction in caspofungin plasma concentrations.). Coadministration of caspofungin with inducers or mixed inducer/inhibitors of drug clearance such as efavirenz, nelfinavir, nevirapine, phenytoin, rifampin, dexamethasone, or carbamazepine may result in clinically important reductions in plasma caspofungin concentrations. ...
The potential for interactions between caspofungin and nelfinavir or rifampin was evaluated in two parallel-panel studies. In study A, healthy subjects received a 14-day course of caspofungin alone (50 mg administered intravenously [IV] once daily) (n = 10) or with nelfinavir (1,250 mg administered orally twice daily) (n = 9) or rifampin (600 mg administered orally once daily) (n = 10). In study B, 14 subjects received a 28-day course of rifampin (600 mg administered orally once daily), with caspofungin (50 mg administered IV once daily) coadministered on the last 14 days, and 12 subjects received a 14-day course of caspofungin alone (50 mg administered IV once daily). The coadministration/administration alone geometric mean ratio for the caspofungin area under the time-concentration profile calculated for the 24-hr period following dosing [AUC(0-24)] was as follows (values in parentheses are 90% confidence intervals [CIs]): 1.08 (0.93-1.26) for nelfinavir, 1.12 (0.97-1.30) for rifampin (study A), and 1.01 (0.91-1.11) for rifampin (study B). The shape of the caspofungin plasma profile was altered by rifampin, resulting in a 14 to 31% reduction in the trough concentration at 24 hr after dosing (C(24h)), consistent with a net induction effect at steady state. Both the AUC and the C(24hr) were elevated in the initial days of rifampin coadministration in study A (61 and 170% elevations, respectively, on day 1) but not in study B, consistent with transient net inhibition prior to full induction. The coadministration/administration alone geometric mean ratio for the rifampin AUC(0-24) on day 14 was 1.07 (90% CI, 0.83-1.38). Nelfinavir does not meaningfully alter caspofungin pharmacokinetics. Rifampin both inhibits and induces caspofungin disposition, resulting in a reduced C(24hr) at steady state. An increase in the caspofungin dose to 70 mg, administered daily, should be considered when the drug is coadministered with rifampin.
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 ml/kg up to 200 ml of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
Elimination: Fecal: 35% as drug or metabolites. Renal: 41% as drug (approximately 1.4% unchanged) or metabolites. In dialysis: Not removed by hemodialysis.
Following administration of a single 70 mg irradiated dose, approximately 92% of the administered radioactivity was distributed into tissues within 36 to 48 hours. Distribution into red blood cells in minimal.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
卡泊芬净可穿过大鼠和兔子的胎盘,在给予卡泊芬净的怀孕动物胎儿的血浆中可以检测到卡泊芬净。
Caspofungin crosses the placenta in rats and rabbits and was detected in the plasma of fetuses of pregnant animals who were dosed with caspofungin.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
卡泊芬净在大鼠中会分布到乳汁中;尚不清楚卡泊芬净在人类中是否会分布到乳汁中。
Caspofungin is distributed into milk in rats; not known whether caspofungin is distributed into milk in humans.
(1,3)- D -葡聚糖合成酶是真菌细胞壁合成的关键成分。卡泊芬净通过非竞争性抑制该酶发挥抗真菌作用。静脉给药后,药物在组织中的分布迅速导致血浆药物浓度下降,随后逐渐从组织中释放。随着剂量的增加,药物代谢也会增加,并且多次给药达到稳态的时间也具有剂量相关性。因此,在临床应用中需注意调整剂量,以避免不良反应。