Diastereoselective Silacyclopropanations of Functionalized Chiral Alkenes
摘要:
Lithium reduction of di-tert-butyldichlorosilane and thermal silylene transfer (105-125 degrees C) are complementary methods for the highly diastereoselective silacyclopropanations of a range of functionalized chiral olefins to afford complex silacycles. We have shown that functionalized cyclohexenes, cyclopentenes, norbornenes, and 1,1-disubstituted alkenes undergo silacyclopropanation with excellent diastereoselectivity (92:8 to >99:1). Our results demonstrate that steric interactions, rather than oxygen-directing effects, control the approach of the silylene or silylenoid intermediate to the olefin. We believe that the sterically demanding nature of the di-tert-butylsilylene species prevents coordination to the oxygen functionality. Thermal silylene transfer conditions exhibit broad functional group tolerance; the elevated temperatures for silylene transfer, however, cannot be employed for the silacyclopropanation of substituted cyclohexenes and 1,1-disubstituted alkenes. Elaboration of the resulting functionalized silacyclopropanes provides an efficient route to polyoxygenated products.
Diastereoselective Silacyclopropanations of Functionalized Chiral Alkenes
摘要:
Lithium reduction of di-tert-butyldichlorosilane and thermal silylene transfer (105-125 degrees C) are complementary methods for the highly diastereoselective silacyclopropanations of a range of functionalized chiral olefins to afford complex silacycles. We have shown that functionalized cyclohexenes, cyclopentenes, norbornenes, and 1,1-disubstituted alkenes undergo silacyclopropanation with excellent diastereoselectivity (92:8 to >99:1). Our results demonstrate that steric interactions, rather than oxygen-directing effects, control the approach of the silylene or silylenoid intermediate to the olefin. We believe that the sterically demanding nature of the di-tert-butylsilylene species prevents coordination to the oxygen functionality. Thermal silylene transfer conditions exhibit broad functional group tolerance; the elevated temperatures for silylene transfer, however, cannot be employed for the silacyclopropanation of substituted cyclohexenes and 1,1-disubstituted alkenes. Elaboration of the resulting functionalized silacyclopropanes provides an efficient route to polyoxygenated products.
homoallylic alcohols in good to excellent yields with high diastereoselectivities (>99:1 dr). Reversed diastereoselectivity was obtained when carbonylsubstrate (e. g., 2‐pyridinecarboxaldehyde, glyoxylic acid) containing chelating substituent was used in the allylation reaction. In addition, the reactions involving acyclic (E)‐cinnamyl bromide as substrate worked equally well with high diastereocontrol.
Brown, Herbert C.; Bhat, Krishna S.; Jadhav, Prabhakar K., Journal of the Chemical Society. Perkin transactions I, 1991, p. 2633 - 2638
作者:Brown, Herbert C.、Bhat, Krishna S.、Jadhav, Prabhakar K.
DOI:——
日期:——
Diastereoselective Silacyclopropanations of Functionalized Chiral Alkenes
作者:Tom G. Driver、Annaliese K. Franz、K. A. Woerpel
DOI:10.1021/ja020183k
日期:2002.6.1
Lithium reduction of di-tert-butyldichlorosilane and thermal silylene transfer (105-125 degrees C) are complementary methods for the highly diastereoselective silacyclopropanations of a range of functionalized chiral olefins to afford complex silacycles. We have shown that functionalized cyclohexenes, cyclopentenes, norbornenes, and 1,1-disubstituted alkenes undergo silacyclopropanation with excellent diastereoselectivity (92:8 to >99:1). Our results demonstrate that steric interactions, rather than oxygen-directing effects, control the approach of the silylene or silylenoid intermediate to the olefin. We believe that the sterically demanding nature of the di-tert-butylsilylene species prevents coordination to the oxygen functionality. Thermal silylene transfer conditions exhibit broad functional group tolerance; the elevated temperatures for silylene transfer, however, cannot be employed for the silacyclopropanation of substituted cyclohexenes and 1,1-disubstituted alkenes. Elaboration of the resulting functionalized silacyclopropanes provides an efficient route to polyoxygenated products.