AbstractThere is huge demand for developing guests that bind β‐CD and can conjugate multiple cargos for cellular delivery. We synthesized trioxaadamantane derivatives, which can conjugate up to three cargos per guest. 1H NMR titration and isothermal titration calorimetry revealed these guests form 1 : 1 inclusion complexes with β‐CD with association constants in the order of 103 M−1. Co‐crystallization of β‐CD with guests yielded crystals of their 1 : 1 inclusion complexes as determined by single‐crystal X‐ray diffraction. In all cases, trioxaadamantane core is buried within the hydrophobic cavity of β‐CD and three hydroxyl groups are exposed outside. We established biocompatibility using representative candidate G4 and its inclusion complex with β‐CD (β‐CD⊂G4), by MTT assay using HeLa cells. We incubated HeLa cells with rhodamine‐conjugated G4 and established cellular cargo delivery using confocal laser scanning microscopy (CLSM) and fluorescence‐activated cell sorting (FACS) analysis. For functional assay, we incubated HeLa cells with β‐CD‐inclusion complexes of G4‐derived prodrugs G6 and G7, containing one and three units of the antitumor drug (S)‐(+)‐camptothecin, respectively. Cells incubated with β‐CD⊂G7 displayed the highest internalization and uniform distribution of camptothecin. β‐CD⊂G7 showed higher cytotoxicity than G7, camptothecin, G6 and β‐CD⊂G6, affirming the efficiency of adamantoid derivatives in high‐density loading and cargo delivery.
摘要开发能结合β-CD并能轭合多种载体进行细胞递送的载体有着巨大的需求。我们合成了三氧杂金刚烷衍生物,每种客体最多可结合三种载体。1H NMR 滴定法和等温滴定量热法显示,这些客体能与β-CD 形成 1 :1 的包合物,其结合常数约为 103 M-1。通过单晶测定,β-CD 与客体的共结晶产生了 1 :1 的包合物晶体。在所有情况下,三氧杂金刚烷核心都埋藏在β-CD的疏水空腔中,三个羟基暴露在外面。我们利用具有代表性的候选 G4 及其与 β-CD(β-CD⊂G4)的包合复合物,通过使用 HeLa 细胞进行 MTT 试验,确定了它们的生物相容性。我们用罗丹明共轭 G4 培养 HeLa 细胞,并通过共聚焦激光扫描显微镜(CLSM)和荧光激活细胞分拣(FACS)分析确定了细胞货物运输。为了进行功能测试,我们用 G4 衍生的原药 G6 和 G7 的 β-CD 包合复合物培养 HeLa 细胞,这两种原药分别含有一个和三个单位的抗肿瘤药物(S)-(+)-喜树碱。用β-CD⊂G7培养的细胞显示出最高的喜树碱内化率和均匀分布。与G7、喜树碱、G6和β-CD⊂G6相比,β-CD⊂G7显示出更高的细胞毒性,这肯定了金刚烷类衍生物在高密度负载和货物运输方面的效率。