Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release
摘要:
The design of retinoid phospholipid prodrugs is described based on molecular dynamics simulations and cytotoxicity studies of synthetic retinoid esters. The prodrugs are degradable by secretory phospholipase A(2) IIA and have potential in liposomal drug delivery targeting tumors. We have synthesized four different retinoid phospholipid prodrugs and shown that they form particles in the liposome size region with average diameters of 94-118 nm. Upon subjection to phospholipase A(2), the lipid prodrugs were hydrolyzed, releasing cytotoxic retinoids and lysolipids. The formulated lipid prodrugs displayed IC50 values in the range of 3-19 mu M toward HT-29 and Colo205 colon cancer cells in the presence of phospholipase A(2), while no significant cell death was observed in the absence of the enzyme.
Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A2 in Tumor Tissue
摘要:
The clinical use of anticancer lipids is severely limited by their ability to cause lysis of red blood cells prohibiting intravenous injection. Novel delivery systems are therefore required in order to develop anticancer ether lipids (AELs) into clinically useful anticancer drugs. In a recent article (J. Med. Chem. 2004, 4 7, 1694) we showed that it is possible to construct liposome systems composed of masked AELs that are activated by secretory phospholipase A(2) in cancerous tissue. We present here the synthesis of six AELs and evaluate the biological activity of these bioactive lipids. The synthesized AEL 1-6 were tested against three different cancer cell lines. It was found that the stereochemistry of the glycerol headgroup in AEL-2 and 3 has a dramatic effect on the cytotoxicity of the lipids. AEL 1-4 were furthermore evaluated for their ability to prevent phosphorylation of the apoptosis regulating kinase Akt, and a correlation was found between their cytotoxic activity and their ability to inhibit Akt phosphorylation.
Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A<sub>2</sub> in Tumor Tissue
作者:Thomas L. Andresen、Simon S. Jensen、Robert Madsen、Kent Jørgensen
DOI:10.1021/jm049006f
日期:2005.11.1
The clinical use of anticancer lipids is severely limited by their ability to cause lysis of red blood cells prohibiting intravenous injection. Novel delivery systems are therefore required in order to develop anticancer ether lipids (AELs) into clinically useful anticancer drugs. In a recent article (J. Med. Chem. 2004, 4 7, 1694) we showed that it is possible to construct liposome systems composed of masked AELs that are activated by secretory phospholipase A(2) in cancerous tissue. We present here the synthesis of six AELs and evaluate the biological activity of these bioactive lipids. The synthesized AEL 1-6 were tested against three different cancer cell lines. It was found that the stereochemistry of the glycerol headgroup in AEL-2 and 3 has a dramatic effect on the cytotoxicity of the lipids. AEL 1-4 were furthermore evaluated for their ability to prevent phosphorylation of the apoptosis regulating kinase Akt, and a correlation was found between their cytotoxic activity and their ability to inhibit Akt phosphorylation.
Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release
作者:Palle J. Pedersen、Sidsel K. Adolph、Arun K. Subramanian、Ahmad Arouri、Thomas L. Andresen、Ole G. Mouritsen、Robert Madsen、Mogens W. Madsen、Günther H. Peters、Mads H. Clausen
DOI:10.1021/jm100190c
日期:2010.5.13
The design of retinoid phospholipid prodrugs is described based on molecular dynamics simulations and cytotoxicity studies of synthetic retinoid esters. The prodrugs are degradable by secretory phospholipase A(2) IIA and have potential in liposomal drug delivery targeting tumors. We have synthesized four different retinoid phospholipid prodrugs and shown that they form particles in the liposome size region with average diameters of 94-118 nm. Upon subjection to phospholipase A(2), the lipid prodrugs were hydrolyzed, releasing cytotoxic retinoids and lysolipids. The formulated lipid prodrugs displayed IC50 values in the range of 3-19 mu M toward HT-29 and Colo205 colon cancer cells in the presence of phospholipase A(2), while no significant cell death was observed in the absence of the enzyme.