Oxidative Biaryl Coupling of Thiophenes and Thiazoles with Arylboronic Acids through Palladium Catalysis: Otherwise Difficult C4-Selective CH Arylation Enabled by Boronic Acids
It adds up to 4! Thiophenes and thiazoles can be arylated in the 4‐ rather than the expected 5‐position in a new CH functionalization reaction (see scheme; TEMPO: 2,2,6,6‐tetramethylpiperidine‐N‐oxyl). The boronicacid proved to be the key to achieving the otherwisedifficult C4 selectivity. The method was applied to a concise synthesis of a key pharmacological structure with potential for treatment
HOLE TRANSPORT MATERIALS INCLUDING OLED APPLICATIONS
申请人:Plextronics, Inc.
公开号:US20130324716A1
公开(公告)日:2013-12-05
The composition described here comprises at least one hole-transporting compound, wherein the hole-transporting compound comprises a core covalently bonded to at least two arylamine groups, wherein the arylamine group optionally comprises one or more intractability groups. The composition can provide good film formation and stability when coated onto hole injection layers. Solution processing of hole transporting layers of OLEDs can be achieved with the composition described here. Good mobility can be achieved.
A Tf2O-mediated, direct dehydrative coupling of (hetero)biaryls and fluorenones proceeds to form the corresponding spirobifluorenes in good to high yields. The reaction system allows the relatively simple nonhalogenated and nonmetalated starting substrates to be directly adopted in the spirocyclisation reaction. In addition, the double cyclisation reaction is easily performed, giving the highly spiro-conjugated
Benzo-fused tri- to heptacyclic heteroarenes were effectively constructed by the rhodium-catalyzed dehydrogenative coupling of phenylheteroarenes with alkynes. Using alkenes as coupling partners, dehydrogenative alkenylation took place selectively on the phenyl moiety of phenylheteroarenes. Several experiments with deuterium-labeled substrates indicated that double C-H bond cleavages take place even in the reaction with alkenes.
BEHRINGER, H.;MEINETSBERGER, E., LIEBIGS ANN. CHEM., 1981, N 10, 1729-1750