摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-O-(4-nitro)benzoyl-5-O-desosaminyl-6-O-methylerythronolide A

中文名称
——
中文别名
——
英文名称
3-O-(4-nitro)benzoyl-5-O-desosaminyl-6-O-methylerythronolide A
英文别名
[(3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-6-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-14-ethyl-12,13-dihydroxy-7-methoxy-3,5,7,9,11,13-hexamethyl-2,10-dioxo-oxacyclotetradec-4-yl] 4-nitrobenzoate
3-O-(4-nitro)benzoyl-5-O-desosaminyl-6-O-methylerythronolide A化学式
CAS
——
化学式
C37H58N2O13
mdl
——
分子量
738.873
InChiKey
IKZMXVGFJSOCIJ-CZWSXZQFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    52
  • 可旋转键数:
    8
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.76
  • 拓扑面积:
    207
  • 氢给体数:
    3
  • 氢受体数:
    14

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    酰化物(3-O-酰基-红霉素衍生物)的合成和抗菌活性:一类新的大环内酯类抗生素。
    摘要:
    将酰基引入红霉素A衍生物而不是L-cladinose的3-O-位导致了一类新的大环内酯类抗生素,我们将其命名为“酰化物”。3-O-硝基苯基乙酰基衍生物TEA0777不仅对易感红霉素的革兰氏阳性病原体而且对可诱导大环内酯类,林可酰胺类,链霉菌素B(MLS(B))的金黄色葡萄球菌和对外排毒的肺炎链球菌均显示出显着的有效活性。这些结果表明酰化物具有作为下一代大环内酯类抗生素的潜力。
    DOI:
    10.1021/jm015566s
点击查看最新优质反应信息

文献信息

  • Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance
    作者:Gerhard König、Pandian Sokkar、Niclas Pryk、Sascha Heinrich、David Möller、Giuseppe Cimicata、Donna Matzov、Pascal Dietze、Walter Thiel、Anat Bashan、Julia Elisabeth Bandow、Johannes Zuegg、Ada Yonath、Frank Schulz、Elsa Sanchez-Garcia
    DOI:10.1073/pnas.2113632118
    日期:2021.11.16
    pathogens. Computational approaches are essential tools to this end since their application enables fast and early strategical decisions in the drug development process. We present a rational design approach, in which acylide antibiotics were screened based on computational predictions of solubility, membrane permeability, and binding affinity toward the ribosome. To assess our design strategy, we tested
    抗生素耐药性是对全球健康的主要威胁;这个问题可以通过开发新的抗菌剂来解决,以跟上病原体的进化适应。计算方法是实现这一目标的重要工具,因为它们的应用可以在药物开发过程中实现快速和早期的战略决策。我们提出了一种合理的设计方法,其中基于溶解度、膜渗透性和对核糖体的结合亲和力的计算预测来筛选酰基抗生素。为了评估我们的设计策略,我们测试了所有候选物的体外抑制活性,然后用几种抗生素抗性菌株在体内评估它们以确定最小抑制浓度。预测的最佳候选综合起来更容易获得,表现出更高的溶解度和对核糖体的结合亲和力,对耐药病原体的活性比泰利霉素高 56 倍。值得注意的是,我们设计的最好的化合物显示出活性,尤其是当与膜弱化药物粘菌素结合时,鲍曼不动杆菌、绿假单胞菌和大肠杆菌是世界卫生组织优先病原体清单中的三个最关键的目标。
查看更多