A Solvolytic C−C Cleavage Reaction of 6-Acetoxycyclohexa-2,4-dienones: Mechanistic Implications for the Intradiol Catechol Dioxygenases
摘要:
6-Acetoxycyclohexa-2,4-dienones are found to undergo a rapid reaction in methanol/water under mildly basic conditions to give an acyclic ketoester as the major product for 6-phenyl and 6-methyl substrates. Reaction monitoring by UV spectroscopy indicates the formation of an unsaturated ketone reaction intermediate (lambda (max) 275 nm, R = Ph) and the transient appearance of a highly conjugated species. Reaction of the 6-phenyl substrate (4.95 x 10(-6) s(-1)) is 2-fold faster than the 6-methyl substrate (2.47 x 10(-6) s(-1)). The reaction rate is first order with respect to substrate concentration, and the final step in the reaction is ps-dependent. No cleavage was observed for a substrate lacking an acetyl substituent. A reaction mechanism for C-C cleavage is proposed involving a benzene oxide-oxepin interconversion. The possible relevance to the catalytic mechanism of the intradiol catechol dioxygenases is discussed.
A Solvolytic C−C Cleavage Reaction of 6-Acetoxycyclohexa-2,4-dienones: Mechanistic Implications for the Intradiol Catechol Dioxygenases
作者:Kirstin L. Eley、Patrick J. Crowley、Timothy D. H. Bugg
DOI:10.1021/jo001669r
日期:2001.3.1
6-Acetoxycyclohexa-2,4-dienones are found to undergo a rapid reaction in methanol/water under mildly basic conditions to give an acyclic ketoester as the major product for 6-phenyl and 6-methyl substrates. Reaction monitoring by UV spectroscopy indicates the formation of an unsaturated ketone reaction intermediate (lambda (max) 275 nm, R = Ph) and the transient appearance of a highly conjugated species. Reaction of the 6-phenyl substrate (4.95 x 10(-6) s(-1)) is 2-fold faster than the 6-methyl substrate (2.47 x 10(-6) s(-1)). The reaction rate is first order with respect to substrate concentration, and the final step in the reaction is ps-dependent. No cleavage was observed for a substrate lacking an acetyl substituent. A reaction mechanism for C-C cleavage is proposed involving a benzene oxide-oxepin interconversion. The possible relevance to the catalytic mechanism of the intradiol catechol dioxygenases is discussed.